Objective: To investigate the contents of antimony in Nandan food, and to research the effects of dietary pathways that mining surrounding usual's heavy metal intake due to mining activities.

Methods: Based on the data from weighing method and chemical analysis method, the dietary exposure level of antimony in Nandan was calculated, and the safety of antimony intake was evaluated by the TDI established by WHO.

Results: A total of 864 samples from 14 food categories were analyzed. The total detection rate was 97. 2%. And antimony concentrations in food ranged from not detected to 1. 750 μg/g, with median and geometric means of 0. 007 and 0. 008 μg/g, respectively. Dietary intakes of Sb by inhabitants in Nandan were below the TDI. The mainresource of antimony was meat which contributed 64. 4% and 61. 2% of the exposure. Antimony exposure to the human health risk assessmentresult show that, through diet of antimony intake, it would not cause obvious health risk to the local resident. However, the mining residents higher than the contrast areas residents, and male are apparently higher than those in female.

Conclusion: The dietary of Sb exposure level was safe in general. However, the meat had a high risk to the residents.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antimony
8
antimony nandan
8
dietary exposure
8
exposure level
8
antimony intake
8
health risk
8
[dietary exposure
4
exposure assessment
4
assessment antimony
4
antimony inhabitants
4

Similar Publications

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO Photoreduction.

Small

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide SbOBr to generate CsSbBr/SbOBr heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the CsSbBr/SbOBr heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers.

View Article and Find Full Text PDF

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

The Photoinduced Response of Antimony from Femtoseconds to Minutes.

Adv Mater

January 2025

Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.

As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!