TGF-β and BMP signals regulate insect diapause through Smad1-POU-TFAM pathway.

Biochim Biophys Acta Mol Cell Res

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Electronic address:

Published: September 2018

The transforming growth factor-β (TGF-β) superfamily signaling pathway contains two general branches, known as TGF-β and bone morphogenetic protein (BMP), that regulate development in animals. It is well known that TGF-β superfamily signaling participates in the regulation of dauer (lifespan extension) in Caenorhabditis elegans, but little is known about the molecular mechanisms of lifespan extension in the pathway. Diapause, a programmed developmental arrest in insects, is similar to dauer in C. elegans. In this study, we find that TGF-β superfamily signaling regulates Helicoverpa armigera diapause via a novel mechanism. Both TGF-β and BMP signals are weaker in the brains of diapause-destined pupae than in nondiapause-destined pupae, and the levels of p-Smad1, POU, TFAM, and mitochondrial activity are decreased in diapause pupae. Development in nondiapause pupae is delayed by an injection of TGF-β or BMP receptor inhibitors. Both TGF-β and BMP signals can activate a common target, Smad1. ChIP and EMSA assays indicate that Smad1 can bind to the POU promoter to regulate its expression. POU can improve the transcription of TFAM, which regulates mitochondrial activity. This is the first report showing that both TGF-β and BMP signals regulate development or diapause through the Smad1-POU-TFAM-mitochondrial activity in insects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2018.06.002DOI Listing

Publication Analysis

Top Keywords

tgf-β bmp
20
bmp signals
16
tgf-β superfamily
12
superfamily signaling
12
tgf-β
9
signals regulate
8
regulate development
8
lifespan extension
8
mitochondrial activity
8
diapause
5

Similar Publications

Pesticide-free agriculture is a fundamental pillar of environmentally friendly agriculture. To this end, there is an active search for new bacterial strains capable of synthesizing secondary metabolites and toxins that protect crops from pathogens and pests. In this study, we isolated a novel strain d21.

View Article and Find Full Text PDF

The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo.

View Article and Find Full Text PDF

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Investigating the effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula.

Chemosphere

January 2025

BioEngine Research team on green process engineering and biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec (Québec), Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!