Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During chloramination of bromide-containing waters, the main brominated amine formed is bromochloramine (NHBrCl). To date, there is no analytical method, free of interference, allowing its accurate quantification. The major reason is that it is not possible to produce a pure NHBrCl solution. In this study, we report a method allowing the accurate quantification of NHBrCl with membrane introduction mass spectrometry (MIMS). First, the molar absorption coefficient for NHBrCl was determined by quantifying NHBrCl as 2,4,6-tribromophenol by HPLC-UV and comparing the results with the direct UV response at 320 nm. A molar absorption coefficient of 304 Mcm was obtained. The results obtained by direct UV measurements were compared to the MIMS signal recorded at m/ z 131 corresponding to the mass of the molecular ion and used to establish a calibration curve. A limit of detection of 2.9 μM (378 μg/L) was determined. MIMS is the only method enabling the unambiguous quantification of NHBrCl, as it is based on m/ z 131, while with other analytical techniques, other halamines can interfere, i.e., overlapping peaks with direct UV measurements and reaction of several halamines with colorimetric reagents or phenols. While the detection limit is not quite low enough to measure NHBrCl in actual drinking water, this analytical method will benefit the scientific community by allowing further mechanistic studies on the contribution of NHBrCl to the formation of toxic disinfection by-products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b00889 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!