Regulating the air in low-oxygen environments protects hermetically stored grains from storage pests damage. However, pests that can tolerate hypoxic stress pose a huge challenge in terms of grain storage. We used various biological approaches to determine the fundamental mechanisms of Tribolium castaneum to cope with hypoxia. Our results indicated that limiting the available oxygen to T. castaneum increased glycolysis and inhibited the Krebs cycle, and that accumulated pyruvic acid was preferentially converted to lactic acid via anaerobic metabolism. Mitochondrial aerobic respiration was markedly suppressed for beetles under hypoxia, which also might have led to mitochondrial autophagy. The enzymatic activity of citrate synthase decreased in insects under hypoxia but recovered within 12 h, which suggested that the beetles recovered from the hypoxia. Moreover, hypoxia-reperfusion resulted in severe oxidative damage to insects, and antioxidant levels increased to defend against the high level of reactive oxygen species. In conclusion, our findings show that mitochondria were the main target in T. castaneum in response to low oxygen. The beetles under hypoxia inhibited mitochondrial respiration and increased antioxidant activity after reoxygenation. Our research advances the field of pest control and makes it possible to develop more efficient strategies for hermetic storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002095PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199056PLOS

Publication Analysis

Top Keywords

mitochondrial respiration
8
increased antioxidant
8
antioxidant activity
8
activity reoxygenation
8
tribolium castaneum
8
beetles hypoxia
8
hypoxia
6
inhibition mitochondrial
4
respiration hypoxia
4
increased
4

Similar Publications

Hypoxic tumors are radioresistant stemming from the fact that oxygen promotes reactive oxygen species (ROS) propagation after water radiolysis and stabilizes irradiation-induced DNA damage. Therefore, an attractive strategy to radiosensitize solid tumors is to increase tumor oxygenation at the time of irradiation, ideally above a partial pressure of 10 mm-Hg at which full radiosensitization can be reached. Historically, the many attempts to increase vascular O delivery have had limited efficacy, but mathematical models predicted that inhibiting cancer cell respiration would be more effective.

View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Mitochondria from harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed.

View Article and Find Full Text PDF

Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.

J Appl Physiol (1985)

December 2024

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.

Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.

View Article and Find Full Text PDF

Antiangiogenic drugs may cause vascular normalization and correct hypoxia in tumors, shifting cells to mitochondrial respiration as the primary source of energy. In turn, the addition of an inhibitor of mitochondrial respiration to antiangiogenic therapy holds potential to induce synthetic lethality. This study evaluated the mitochondrial inhibitor ME-344 in combination with bevacizumab in patients with refractory metastatic colorectal cancer (mCRC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!