Rhodium nanoparticles are promising transition metal nanocatalysts for electrochemical and synthetic organic chemistry applications. However, notwithstanding their potential, to date, Rh nanoparticles have not been utilized for biological applications; there has been no cytotoxicity study of Rh reported in the literature. In this regard, the absence of a facile and controllable synthetic strategy of Rh nanostructures with various sizes and morphologies might be responsible for the lack of progress in this field. Herein, we have developed a synthetic strategy for Rh nanostructures with controllable morphology through an inverse-directional galvanic replacement reaction. Three types of Rh-based nanostructures-nanoshells, nanoframes, and porous nanoplates-were successfully synthesized. A plausible synthetic mechanism based on thermodynamic considerations has also been proposed. The cytotoxicity, surface functionalization, and photothermal therapeutic effect of manufactured Rh nanostructures were systematically investigated to reveal their potential for in vitro and in vivo biological applications. Considering the comparable behavior of porous Rh nanoplates to that of gold nanostructures that are widely used in nanomedicine, the present study introduces Rh-based nanostructures into the field of biological research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b02698DOI Listing

Publication Analysis

Top Keywords

rhodium nanoparticles
8
biological applications
8
synthetic strategy
8
strategy nanostructures
8
nanostructures
5
morphology-controlled synthesis
4
synthesis rhodium
4
nanoparticles cancer
4
cancer phototherapy
4
phototherapy rhodium
4

Similar Publications

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

Sonocatalytic degradation of RB-5 dye using ZnO nanoparticles doped with transition metals.

Environ Sci Pollut Res Int

January 2025

Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico.

In this study, ZnO was doped and co-doped with rhodium and tungsten to assess the impact of these transition metals on the sonocatalytic degradation of reactive black 5 azo dye (RB-5). Structural analysis revealed that doping ZnO with 1% Rh and W does not alter its wurtzite hexagonal structure, although minor changes in cell parameters were observed due to differences in electronic density. Interestingly, co-doping resulted in lower degradation efficiency than single doping, with W-ZnO emerging as the most effective catalyst, achieving 100% RB-5 degradation within 60 min, likely due to a higher density of oxygen vacancies and hydroxyl groups.

View Article and Find Full Text PDF

The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20-40 nm range.

View Article and Find Full Text PDF

Biomass-derived substrate hydrogenation over rhodium nanoparticles supported on functionalized mesoporous silica.

Nanoscale

December 2024

Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, Circuito Escolar S/N, Coyoacán, Cd. Universitaria, 04510 Ciudad de México, Mexico.

The use of supported rhodium nanoparticles (RhNPs) is gaining attention due to the drive for better catalyst performance and sustainability. Silica-based supports are promising for RhNP immobilization because of their thermal and chemical stability. Functionalizing silica allows for the design of catalysts with improved activity for biomass transformations.

View Article and Find Full Text PDF
Article Synopsis
  • Rhodium nanoparticles show promise as effective photosensitizers in cancer treatment, emitting cytotoxic effects on cancer cells with near-infrared laser.
  • The therapy disrupts tumor metabolism by inhibiting proteins for ATP synthesis and mitochondrial function, leading to reduced energy in cancer cells.
  • It induces oxidative stress and apoptosis, minimizes cell invasion, and is effective even against multi-drug resistant cells, with tests showing reduced tumor growth in a chicken embryo model while keeping the embryos viable.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!