Target-Induced Catalytic Assembly of Y-Shaped DNA and Its Application for In Situ Imaging of MicroRNAs.

Angew Chem Int Ed Engl

Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China.

Published: July 2018

DNA is a highly programmable material that can be configured into unique high-order structures, such as DNA branched junctions containing multiple helical arms converging at a center. Herein we show that DNA programmability can deliver in situ growth of a 3-way junction-based DNA structure (denoted Y-shaped DNA) with the use of three hairpin-shaped DNA molecules as precursors, a specific microRNA target as a recyclable trigger, and a DNA polymerase as a driver. We demonstrate that the Y-shaped configuration comes with the benefit of restricted freedom of movement in confined cellular environment, which makes the approach ideally suited for in situ imaging of small RNA targets, such as microRNAs. Comparative analysis illustrates that the proposed imaging technique is superior to both the classic fluorescence in situ hybridization (FISH) method and an analogous amplified imaging method via programmed growth of a double-stranded DNA (rather than Y-shaped DNA) product.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201804741DOI Listing

Publication Analysis

Top Keywords

y-shaped dna
12
dna
10
in situ imaging
8
target-induced catalytic
4
catalytic assembly
4
y-shaped
4
assembly y-shaped
4
dna application
4
in situ
4
application in situ
4

Similar Publications

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Ultrasensitive and population-scale cancer screening technologies are critical to reducing cancer mortality. However, the current qRT-PCR falls short in high-throughput screening of multiple cancers. Here, a rotavirus-inspired multicancer diagnosis system (RMDS) is developed via nanointerface engineering.

View Article and Find Full Text PDF

Purpose: The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity.

View Article and Find Full Text PDF

Acidic Extracellular pH-Activated Allosteric DNA Nanodevice for Fluorescence Imaging of APE1 Activity in Tumor Cells.

Anal Chem

November 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China.

Allostery is a phenomenon where the binding of a ligand at one allosteric site influences the affinity for another ligand at an active site. Different from orthosteric regulation, it allows for more precise control of biomolecular activity and enhances the stability of the molecules. Inspired by allosteric regulation of natural molecules, we present a Y-shaped allosteric DNA nanodevice, termed YssAP, that was pH-responsive and functionalized with the AS1411 aptamer for accurate fluorescence imaging of human apurinic/apyrimidinic endonuclease (APE1) activity in tumor cells.

View Article and Find Full Text PDF

Atherosclerosis-induced lethal cardiovascular disease remains a severe healthcare threat due to the limited drug efficiency and untimely prediction of high-risk events caused by inadequate target specificity of medications, incapable recognition of insensitive patients, and variable morphology of vulnerable plaques. Therefore, it is necessary to develop efficient strategies to improve the diagnosis accuracy and achieve visualized treatment of atherosclerosis. Herein, we establish an inflamed endothelium-targeted three-in-one nucleic acid nanogel system that can reverse the inflammatory state of endothelial cells (ECs) in plaques and simultaneously achieve real-time monitoring of the therapy process for efficient atherosclerosis diagnosis and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!