A versatile and robust Agrobacterium-based gene stacking system generates high-quality transgenic Arabidopsis plants.

Plant J

United States Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA.

Published: June 2018

Biotechnology provides a means for the rapid genetic improvement of plants. Although single genes have been important in engineering herbicide and pest tolerance traits in crops, future improvements of complex traits like yield and nutritional quality will likely require the introduction of multiple genes. This research reports a system (GAANTRY; Gene Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY) for the flexible, in vivo stacking of multiple genes within an Agrobacterium virulence plasmid Transfer-DNA (T-DNA). The GAANTRY system utilizes in vivo transient expression of unidirectional site-specific recombinases and an alternating selection scheme to sequentially assemble multiple genes into a single transformation construct. To demonstrate GAANTRY's capabilities, 10 cargo sequences were sequentially stacked together to produce a 28.5-kbp T-DNA, which was used to generate hundreds of transgenic events. Approximately 90% of the events identified using a dual antibiotic selection screen exhibited all of the introduced traits. A total of 68% of the tested lines carried a single copy of the selection marker transgene located near the T-DNA left border, and only 8% contained sequence from outside the T-DNA. The GAANTRY system can be modified to easily accommodate any method of DNA assembly and generate high-quality transgenic plants, making it a powerful, yet simple to use tool for plant genetic engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.13992DOI Listing

Publication Analysis

Top Keywords

multiple genes
12
high-quality transgenic
8
t-dna gaantry
8
gaantry system
8
versatile robust
4
robust agrobacterium-based
4
agrobacterium-based gene
4
gene stacking
4
system
4
stacking system
4

Similar Publications

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

Patterns of Isoform Variation for N Gene Subgenomic mRNAs in Betacoronavirus Transcriptomes.

Viruses

December 2024

Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.

The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.

View Article and Find Full Text PDF

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

The bHLH (basic helix-loop-helix) transcription factors function as crucial regulators in numerous biological processes including abiotic stress responses and plant development. According to our RNA-seq analysis of tomato seedlings under salt stress, we found that, although the bHLH gene family in tomato has been studied, there are still so many tomato bHLH genes that have not been identified and named, which will hinder the later study of . In total, 195 that were unevenly distributed onto 12 chromosomes were identified from the tomato genome and were classified into 27 subfamilies based on their molecular features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!