Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998991PMC
http://dx.doi.org/10.1093/cercor/bhy082DOI Listing

Publication Analysis

Top Keywords

cortical interneuron
12
vegfa influence
8
interneuron development
8
vascular-derived vegfa
4
vegfa promotes
4
cortical
4
promotes cortical
4
interneuron
4
interneuron migration
4
migration proximity
4

Similar Publications

Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.

View Article and Find Full Text PDF

Neuronal connection dysfunction is a convergent cause of cognitive deficits in mental disorders. Cognitive processes are finely regulated at the synaptic level by membrane proteins, some of which are shed and detectable in patients' cerebrospinal fluid (CSF). However, whether these soluble synaptic proteins can harnessed as innovative pro-cognitive factors to treat brain disorders remains unclear.

View Article and Find Full Text PDF

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons communicate information through variable action potentials that can differ significantly with each stimulus repetition.
  • The study investigates the reliability of cortical neurons when stimulated with simulated synaptic inputs and finds that parvalbumin+ (PV) interneurons exhibit high spiking reliability compared to excitatory neurons.
  • This high reliability in PV interneurons enables precise inhibition of other neurons, while the variability in excitatory neurons allows for better integration of synaptic inputs, ultimately influencing how information is processed in the brain.
View Article and Find Full Text PDF

Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus.

J Mol Histol

December 2024

Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.

The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!