Mosses are critical components of boreal ecosystems where they typically account for a large proportion of net primary productivity and harbour diverse bacterial communities that can be the major source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have limited understanding of how microbial communities vary across boreal moss species and the extent to which local site conditions may influence the composition of these bacterial communities. We used marker gene sequencing to analyze bacterial communities associated with seven boreal moss species collected near Fairbanks, AK, USA. We found that host identity was more important than site in determining bacterial community composition and that mosses harbour diverse lineages of potential N -fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including candidate phylum WPS-2). We performed shotgun metagenomic sequencing to assemble genomes from the WPS-2 candidate phylum and found that these moss-associated bacteria are likely anoxygenic phototrophs capable of carbon fixation via RuBisCo with an ability to utilize byproducts of photorespiration from hosts via a glyoxylate shunt. These results give new insights into the metabolic capabilities of understudied bacterial lineages that associate with mosses and the importance of plant hosts in shaping their microbiomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.14288 | DOI Listing |
Sci Total Environ
December 2024
Department of Geography and Environmental Management, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
J Environ Manage
November 2024
Geological Survey of Finland (GTK), Vuorimiehentie 5, 02151 Espoo, Finland; University of Eastern Finland (UEF), Tulliportinkatu 1, 80130 Joensuu, Finland.
Sci Rep
September 2024
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
Moss-microbe interactions contribute to ecosystem processes in boreal forests. Yet, how host-specific characteristics and the environment drive the composition and metabolic potential of moss microbiomes is still poorly understood. In this study, we use shotgun metagenomics to identify the taxonomy and metabolic potential of the bacteria of four moss species of the boreal forests of Northern Québec, Canada.
View Article and Find Full Text PDFEnviron Evid
March 2024
Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
Tardigrades (Tardigrada) are a phylum of micrometazoans found in all biomes on Earth, but their ecology and habitat preferences remain vastly understudied. Boreal peatlands include a diversity of habitat types and high structural heterogeneity that represents an interesting system to study some of the poorly known habitat preferences of tardigrades. Here, we investigate for the first time tardigrade communities in peatland mosses and the latter's potential associations with key environmental variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!