Rational Synthesis of Antiaromatic 5,15-Dioxaporphyrin and Oxidation into β,β-Linked Dimers.

Angew Chem Int Ed Engl

Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.

Published: July 2018

5,15-Dioxaporphyrin was synthesized for the first time by a nucleophilic aromatic substitution reaction of a nickel bis(α,α'-dibromodipyrrin) complex with benzaldoxime, followed by an intramolecular annulation of the α-hydroxy-substituted intermediate. This unprecedented molecule is a 20π-electron antiaromatic system, in terms of Hückel's rule of aromaticity, because lone pair electrons of oxygen atoms are incorporated into the 18π-electron conjugated system of the porphyrin. A theoretical analysis based on the gauge-including magnetically induced current method confirmed its antiaromaticity and a dominant inner ring pathway for the ring current. The unique reactivity of 5,15-dioxaporphyrin forming a β,β-linked dimer upon oxidation was also revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201804648DOI Listing

Publication Analysis

Top Keywords

rational synthesis
4
synthesis antiaromatic
4
antiaromatic 515-dioxaporphyrin
4
515-dioxaporphyrin oxidation
4
oxidation ββ-linked
4
ββ-linked dimers
4
dimers 515-dioxaporphyrin
4
515-dioxaporphyrin synthesized
4
synthesized time
4
time nucleophilic
4

Similar Publications

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

Roles of Mature Domain Targeting Signals (MTSs) for Protein Translocation and Secretion in .

Int J Mol Sci

December 2024

Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.

is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.

View Article and Find Full Text PDF

Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis.

Int J Mol Sci

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

G protein-coupled receptors (GPCRs) play essential roles in numerous physiological processes and are key targets for drug development. Among them, adhesion GPCRs (aGPCRs) stand out for their unique domain structures and diverse functions. ADGRG2 is a member of the aGPCR family and is involved in the regulation of various systems in the human body, including reproductive, nervous, cardiovascular, and endocrine systems.

View Article and Find Full Text PDF

The substituent effect has a significant influence on the optical properties of spectral shape, width, and wavelength, and the intensities of the maximum peaks of emission (EMI) and circularly polarized luminescence (CPL). In this work, we conducted a systematic theoretical study to investigate how substituents alter the optical response in the EMI and CPL spectra of three [7]helicene derivatives at the vibronic level. To incorporate the vibronic effect, a state-of-the-art time-dependent (TD) method was used to achieve the fully converged spectra.

View Article and Find Full Text PDF

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!