The present study aimed to identify novel intervertebral disc degeneration (IDD)‑associated long noncoding (lnc)RNAs and genes. The lncRNA and mRNA microarray dataset GSE56081 was downloaded from the Gene Expression Omnibus database and included 5 samples from patients with degenerative lumbar nucleus pulposus and 5 normal controls. Differentially expressed lncRNAs or differentially expressed genes (DEGs) were identified and co‑expression network analysis was performed followed by functional analysis for genes in the network. Additionally, a microRNA (miRNA)‑lncRNA‑mRNA competing endogenous RNA (ceRNA) regulatory network was constructed based on DEGs and lncRNAs in the co‑expression network. Furthermore, a literature search was performed to identify specific miRNAs that had been previously associated with IDD and a specific miRNA‑associated ceRNA network was extracted from the co‑expression network. A total of 967 genes and 137 lncRNAs were differentially expressed between IDD samples and controls. A co‑expression network was constructed and contained 39 differentially expressed lncRNAs and 209 DEGs, which were primarily involved in 'skeletal system development', 'response to mechanical stimulus' and 'bone development'. Furthermore, a ceRNA network was established, including 79 miRNAs, 9 downregulated lncRNAs and 148 DEGs. The identified miRNAs included a previously reported disease‑associated miRNA, hsa‑miR‑140. The present study demonstrated that hsa‑miR‑140 was regulated by three lncRNAs in the hsa‑miR‑140‑associated ceRNA network, including KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), OIP5 antisense RNA 1 (OIP5‑AS1) and UGDH antisense RNA 1 (UGDH‑AS1). KCNQ1OT1 was co‑expressed with neurochondrin (NCDN) and lon peptidase 2, peroxisomal. In addition, the lncRNAs OIP5‑AS1 and UGDH‑AS1 targeted several overlapping co‑expressed genes, including forkhead box F1 (FOXF1) and polycystin 1, transient receptor potential channel interacting (PKD1). Therefore, KCNQ1OT1 may regulate the expression of NCDN, and OIP5‑AS1 and UGDH‑AS1 may affect the expression of FOXF1 and PKD1 in IDD. Further experiments are required to validate the results of the present study, which may provide valuable insights into the identification of novel biomarkers associated with IDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072222 | PMC |
http://dx.doi.org/10.3892/mmr.2018.9128 | DOI Listing |
J Transl Med
January 2025
School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550000, China.
Background: Human kinesin family member 11 (KIF11) plays a vital role in regulating the cell cycle and is implicated in the tumorigenesis and progression of various cancers, but its role in endometrial cancer (EC) is still unclear. Our current research explored the prognostic value, biological function and targeting strategy of KIF11 in EC through approaches including bioinformatics, machine learning and experimental studies.
Methods: The GSE17025 dataset from the GEO database was analyzed via the limma package to identify differentially expressed genes (DEGs) in EC.
Background: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).
Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.
BMC Neurosci
January 2025
Department of General Practice, Shanghai Xuhui Central Hospital, Shanghai, China.
Background: Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is unknown.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China.
Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.
Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.
BMC Genomics
January 2025
College of Forestry and Grassland, Nanjing Forestry University, Nanjing, 210037, China.
Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!