Here we present a comprehensive study on the photophysics of QDs-fullerene blends, aiming to elucidate the impact of ligands on the extraction of carriers from QDs. We investigated how three different ligands (oleylamine, octadecanethiol and propanethiol) influence the dynamics of charge generation, separation, and recombination in blends of CdSe/CdS core/shell QDs and PCBM. We accessed each relevant process directly by combining the results from both optical and magnetic spectroscopies. Transient absorption measurements revealed a faster interaction dynamics in thiol-capped ligands. Through phenomenological modeling of the interaction processes, i.e., energy transfer and electron transfer, we estimated the suppression of exciton migration and the enhancement of electron transfer processes when alkyl-thiols are employed as ligands. Contextually, we report the profound impact of the ligands' alkyl chain length, leading to strengthened interactions with PCBM acceptors. Quantitatively, we measured a 10-fold increase in the electron transfer rate when oleylamine ligands were exchanged with propanethiol ligands. EPR spectroscopy gave access to subtle details regarding both the enhanced charge generation and lower binding energy of charge-transfer states in blends compared to PCBM alone. Moreover, through pulsed EPR techniques, we inferred the localization of deep electron traps in localized sites close to QDs in the blends. Therefore, our thorough characterization evidenced the essential role of ligands in determining QD interactions. We believe that these discoveries will contribute to the efficient incorporation of QDs in existing organic PV technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr03520bDOI Listing

Publication Analysis

Top Keywords

electron transfer
12
charge generation
8
ligands
7
blends
5
engineering interactions
4
interactions qds-pcbm
4
qds-pcbm blends
4
blends surface
4
surface chemistry
4
chemistry approach
4

Similar Publications

We present a novel electrochemical dicarboxylation of epoxides with CO2, characterized by the cleavage of two C-O single bonds. Not only are vinyl epoxides viable, but cyclic carbonates also serve as effective substrates, facilitating the synthesis of E-configured adipic and octanedioic acids with high chemo-, regio-, and stereoselectivity. The synthetic practicality is further highlighted by the diverse functionalizations of the resulting multifunctional diacids.

View Article and Find Full Text PDF

One-Pot Synthesis of Oxygen Vacancy-Rich Amorphous/Crystalline Heterophase CaWO Nanoparticles for Enhanced Radiodynamic-Immunotherapy.

Adv Sci (Weinh)

December 2024

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.

Photochem Photobiol Sci

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!