Phenol removal from aqueous solution using waste ash.

Data Brief

Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.

Published: June 2018

Phenol is a hazardous organic chemical that introduced into the environment by industrial and pharmaceutical discharges. As a versatile option for phenol removal, adsorption would be viable if it accompanying with low cost adsorbents. This article described a natural, very cheap and local available adsorbent for phenol removal. Phenol showed a high affinity to waste ash which mainly composed of SiO (41.6%), AlO (17.3%) and MgO (15.9%). Up to 70% of phenol adsorbed in the first 30 min of agitation. The phenol removal was increased by increasing adsorbent dose (0.5-10 g/L) and decreasing pH (2-12) and pollutant concentration (10-100 mg/L). The positive value of in thermodynamic data (0.06) revealed that the process is endothermic. The high and positive value of ∆° (13.01) and negative values of ∆° (- 5.36 to - 7.28), showed a high affinity of phenol to the adsorbent and the spontaneous nature of the adsorption. Isotherm modelling revealed that the phenol molecules adsorbed in multilayer with the maximum adsorption capacity of 173.2 mg/g. The rate limiting step in the sorption process was chemisorption, based on the kinetic data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996314PMC
http://dx.doi.org/10.1016/j.dib.2018.03.049DOI Listing

Publication Analysis

Top Keywords

phenol removal
16
phenol
9
waste ash
8
high affinity
8
removal aqueous
4
aqueous solution
4
solution waste
4
ash phenol
4
phenol hazardous
4
hazardous organic
4

Similar Publications

Glycine betaine enhances heavy metal phytoremediation via rhizosphere modulation and nitrogen metabolism in king grass-Serratia marcescens strain S27 symbiosis.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.

View Article and Find Full Text PDF

The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate.

Water Res

January 2025

Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:

High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).

View Article and Find Full Text PDF

To exclusively evaluate, in vitro, the efficacy of five intracanal medicaments against Candida albicans and Enterococcus faecalis in infected single-rooted primary teeth. Forty-three teeth were selected, out of which 42 were simultaneously contaminated with C. albicans and E.

View Article and Find Full Text PDF

In this study, the novel activated carbon developed from fruit stone, through hydrothermal treatment at low pressure and temperature, was utilized for the removal of 4-nitrophenol, 4-chlorophenol, and phenol from water. The activated carbon produced (AC-HTPEFS) showed a well-developed porosity with a surface area of 569 m g and a total pore volume of 0.342 cm g.

View Article and Find Full Text PDF

The use of sewage sludge activated carbon (thickened samples ACS1 and non-thickened samples ACS2) in a variety of applications and simple environmentally friendly production techniques are attracting more and more attention. We offer here a novel environmentally friendly method based on the green synthesis of activated carbons (ACS1/ACS2) using sewage sludge (SS). These activated carbons are then used to effectively remove the water-based reactive dye phenol red (PR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!