Background: Climatic and weather factors become important determinants of vector-borne diseases transmission like malaria. This study aimed to prove relationships between weather factors with considering human migration and previous case findings and malaria cases in endemic areas in Purworejo during 2005-2014.

Methods: This study employed ecological time series analysis by using monthly data. The independent variables were the maximum temperature, minimum temperature, maximum humidity, minimum humidity, precipitation, human migration, and previous malaria cases, while the dependent variable was positive malaria cases. Three models of count data regression analysis i.e. Poisson model, quasi-Poisson model, and negative binomial model were applied to measure the relationship. The least Akaike Information Criteria (AIC) value was also performed to find the best model. Negative binomial regression analysis was considered as the best model.

Results: The model showed that humidity (lag 2), precipitation (lag 3), precipitation (lag 12), migration (lag1) and previous malaria cases (lag 12) had a significant relationship with malaria cases.

Conclusion: Weather, migration and previous malaria cases factors need to be considered as prominent indicators for the increase of malaria case projection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996329PMC

Publication Analysis

Top Keywords

malaria cases
24
weather factors
12
human migration
12
migration previous
12
previous malaria
12
malaria
9
time series
8
series analysis
8
cases endemic
8
regression analysis
8

Similar Publications

Malaria remains a major public health threat in Sub-Saharan Africa. According to the World Health Organization (WHO) estimates, species account for nearly 100% of the malaria cases occurring on the African continent. According to the Centers for Disease Control and Prevention (CDC), falciparum malaria predominates, but non-falciparum species are also present in Africa.

View Article and Find Full Text PDF

Contribution of Magnetic Resonance Imaging Studies to the Understanding of Cerebral Malaria Pathogenesis.

Pathogens

November 2024

Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France.

Cerebral malaria (CM), the most lethal clinical syndrome of infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published.

View Article and Find Full Text PDF

Lao People's Democratic Republic (Lao PDR) has made significant progress in reducing malaria in recent years. In the Greater Mekong Subregion, forest-going is often a risk factor contributing to continuing malaria transmission. This study assessed forest-going and other potential risk factors for malaria cases in Champasak Province, Lao PDR.

View Article and Find Full Text PDF

Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion.

PLoS Negl Trop Dis

January 2025

Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.

Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.

View Article and Find Full Text PDF

Human mobility and malaria risk in peri-urban and rural communities in the Peruvian Amazon.

PLoS Negl Trop Dis

January 2025

Laboratorio ICEMR- Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú.

Background: While the global burden of malaria cases has decreased over the last two decades, the disease remains a major international threat, even on the rise in many regions. More than 85% of Peruvian malaria cases are in the Amazonian region of Loreto. Internal mobility primarily related to occupation is thought to be primarily responsible for maintaining endemicity and introducing and reintroducing malaria parasites into areas of anophelism, a challenge for malaria eradication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!