Hypoxia restrains the expression of complement component 9 in tumor-associated macrophages promoting non-small cell lung cancer progression.

Cell Death Discov

1State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060 Guangzhou, China.

Published: June 2018

The tumor microenvironment, including stroma cells, signaling molecules, and the extracellular matrix, critically regulates the growth and survival of cancer cells. Dissecting the active molecules in tumor microenvironment may uncover the key factors that can impact cancer progression. Human NSCLC tumor tissue-conditioned medium (TCM) and adjacent nontumor tissue-conditioned medium (NCM) were used to treat two NSCLC cells LSC1 and LAC1, respectively. Cell growth and foci formation assays were applied to assess the effects of TCM and NCM on cancer cells. The active factors were identified by protein mass spectrometry. Cell growth and foci formation assays showed that 8 of 26 NCM and none of TCM could effectively lead to tumor cell lysis, which was known as tumoricidal activity. And then protein mass spectrometry analysis and functional verifications confirmed that complement component 9 (C9) played a crucial role in the complement-dependent cytotoxicity (CDC)-mediated tumoricidal activity in vitro. Furthermore, immunofluorescent staining revealed that C9 specifically expressed in most alveolar macrophages (AMs) in adjacent lung tissues and a small fraction of tumor-associated macrophages (TAMs) in NSCLC tissues. Most importantly, the percentage of C9-positive cells in AMs or TAMs was responsible for the tumoricidal activity of NCM and TCM. Herein, we found that high expression of C9 in TAMs was a significant independent prognostic factor ( = 0.029), and associated with beneficial overall survival ( = 0.012) and disease-free survival ( = 0.016) for patients with NSCLC. Finally, we unveiled that hypoxic tumor microenvironment could switch the phenotype of macrophages from M1 to M2 forms, accompanying with the downregulation of C9 in TAMs. Collectively, our findings elucidated a novel role of TAMs expressing C9 in the prognosis of NSCLC patients, which provided a promising strategy in the development of anticancer treatments based on the CDC-mediated tumoricidal activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992192PMC
http://dx.doi.org/10.1038/s41420-018-0064-3DOI Listing

Publication Analysis

Top Keywords

tumoricidal activity
16
tumor microenvironment
12
complement component
8
tumor-associated macrophages
8
cancer progression
8
cancer cells
8
tissue-conditioned medium
8
cell growth
8
growth foci
8
foci formation
8

Similar Publications

Hepatocellular carcinoma (HCC) remains one of the most lethal malignant tumors. Multimodal therapeutics with synergistic effects for treating HCC have attracted increasing attention, for instance, designing biocompatible porphyrin-based nanomedicines for enzyme-mimetic and ultrasound (US)-activable reactive oxygen species (ROS) generation. Despite the promise, the landscape of such advancements remains sparse.

View Article and Find Full Text PDF

Inhibition of furin in CAR macrophages directs them toward a proinflammatory phenotype and enhances their antitumor activities.

Cell Death Dis

December 2024

Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire Et Spectrométrie de Masse (PRISM), Villeneuve d'Ascq, France.

Chimeric antigen receptor (CAR)-T-cell therapy has revolutionized cellular immunotherapy, demonstrating remarkable efficacy in hematological cancers. However, its application in solid tumors faces significant challenges, including limited T-cell infiltration and tumor-induced immunosuppression. Given the prominent role of macrophages in the tumor microenvironment, their phenotypic plasticity and inherent antitumor properties, such as phagocytosis, offer a promising avenue for therapeutic intervention.

View Article and Find Full Text PDF

Depletion of Tregs from CD4 CAR-T cells enhances the tumoricidal effect of CD8 CAR-T cells in anti-CD19 CAR-T therapy.

FEBS J

December 2024

Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China.

Chimeric antigen receptor T (CAR-T) cell therapy, which targets CD19 for hematological malignancies, represents a breakthrough in cancer immunotherapy. However, some patients may develop resistance to CAR-T treatment, underscoring the importance of optimizing CAR-T design to enhance responsiveness. Here, we investigated the impact of different subpopulations in anti-CD19 CAR-T cells on the tumoricidal effect.

View Article and Find Full Text PDF

Poor chemotherapy efficacy in pancreatic cancer is attributed to limited drug permeation caused by the dense extracellular matrix (ECM) and drug degradation induced by tumor-colonizing bacteria. Here, a tumor-targeting probiotic-nanosystem is elaborately designed to remodulate ECM and selectively regulate tumor-colonizing bacteria for improving chemo-immunotherapy against pancreatic cancer. Specifically, drug-loaded liposomes are conjugated with Clostridium Butyricum (CB) via matrix metalloproteinase-2 (MMP-2)-responsive peptide to construct a probiotic-nanosystem.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma is an aggressive brain cancer that currently lacks effective treatments, prompting research for better therapeutic options.
  • Researchers discovered a compound called gliocidin that selectively kills glioblastoma cells without harming normal cells by targeting a specific vulnerability in the cancer's purine synthesis process.
  • Gliocidin works by being converted into an active metabolite that disrupts cancer cell metabolism, and when combined with the drug temozolomide, it shows potential for enhancing patient survival rates in animal models.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!