Coiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry. Upon shearing, we observe an initial rise in the force, which is followed by a constant force plateau and ultimately strand separation. The force required for strand separation depends on the coiled coil length and the applied loading rate, suggesting that coiled coil shearing occurs out of equilibrium. This out-of-equilibrium behaviour is determined by a complex structural response which involves helix uncoiling, uncoiling-assisted sliding of the helices relative to each other in the direction of the applied force as well as uncoiling-assisted dissociation perpendicular to the force axis. These processes follow a hierarchy of timescales with helix uncoiling being faster than sliding and sliding being faster than dissociation. In SMFS experiments, strand separation is dominated by uncoiling-assisted dissociation and occurs at forces between 25-45 pN for the shortest 3-heptad coiled coil and between 35-50 pN for the longest 4-heptad coiled coil. These values are highly similar to the forces required for shearing apart short double-stranded DNA oligonucleotides, reinforcing the potential role of coiled coils as nanomechanical building blocks in applications where protein-based structures are desired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969510 | PMC |
http://dx.doi.org/10.1039/c8sc01037d | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, 15355, Ansan, Gyeonggi-do, South Korea.
Although many institutions increasingly perform endovascular coiling instead of microsurgical clipping as the primary treatment for ruptured aneurysms, there remains ongoing debate regarding the optimal treatment strategy for ruptured middle cerebral artery (MCA) aneurysms. Therefore, we compared the outcomes of clipping and coiling for treating ruptured MCA aneurysms. A total of 155 ruptured MCA aneurysms that were deemed eligible for both clipping and coiling were retrospectively reviewed.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
To evaluate the safety and efficacy of staged coiling followed by flow diverter (FD) in the treatment of ruptured intracranial aneurysms(RIAs). A retrospective analysis was conducted on 20 patients with RIAs treated with staged coiling followed by FD at a single center, between April 2015 and September 2024. Patient demographics, aneurysm characteristics, clinical and imaging outcomes were reviewed.
View Article and Find Full Text PDFCureus
December 2024
Department of Ophthalmology, Hospital University Kebangsaan Malaysia, Kuala Lumpur, MYS.
We report a rare case of a missed intracavernous internal carotid artery dissecting aneurysm occurring as a complication of the base of skull fracture with severe brain injury causing acute cavernous sinus syndrome with permanent vision loss. A 31-year-old Myanmar lady had an alleged motor vehicle accident and suffered severe traumatic brain injury with multiple intracranial bleeds, multiple facial bone and base of skull fractures, and limb fractures. At one week post-trauma, she had severe right eye proptosis with vision loss, ophthalmoplegia, chemosis, and high intraocular pressure.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street , Boston, MA, 02215, USA.
Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Urban and Architectural Heritage Conservation, Ministry of Education, School of Architecture, Southeast University, 2# Sipailou, Nanjing, 210096, China.
This paper presents a microperforated panel (MPP) sound absorber with parallel coiled-up-cavities of different-depths (PCD) and the corresponding optimization on their cavities. In this study, an analytical model is initially proposed for estimating the cavity depths of the PCD-MPP absorber upon normal incidence absorption coefficient evaluation at given resonance frequencies. Cavity effective depths and normal incidence absorption coefficient are evaluated after coiling up cavities for a compact structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!