One-step synthesis of fluorescent molecules (SNBDP) containing one disulfide bond and two -nitrobenzyl groups was demonstrated multi-component Passerini reaction. This hydrophobic SNBDP could self-assemble into nanocapsules (SNBDP NCs) in aqueous solution disulfide-induced assembly. The obtained nanocapsules were stable in aqueous solution for several weeks and exhibited enhanced fluorescence when nanocapsules were destroyed due to disaggregation-induced emission. The nanocapsules not only were reduction-sensitive and light-responsive, but also could be endocytosed by HeLa cells for cellular imaging. The enhanced fluorescence in the glutathione (GSH) pretreated HeLa cells showed that the compound was reduction-sensitive in living cells. WST-8 assays showed the nanocapsules were biocompatible and could further be used as drug delivery carriers. Indocyanine green (ICG), a clinically approved NIR dye, was loaded into the nanocapsules (ICG@SNBDP NCs). ICG@SNBDP NCs showed enhanced photothermal efficacy compared with same concentration of free ICG under 808-nm laser irradiation. Consequently, ICG@SNBDP NCs upon NIR irradiation can effectively kill cancer cells through local hyperthermia. These results highlight the potential of disulfide-induced nanocapsules as smart nanoparticles for cellular imaging and therapeutic agent delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965061 | PMC |
http://dx.doi.org/10.1039/c5sc03707g | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
Manganese ions (Mn) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn in the subcellular compartments would promote the activation of STING signaling pathways.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFAnal Methods
January 2025
Defence Research and Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh 474002, India.
A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.
View Article and Find Full Text PDFFood Res Int
February 2025
Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil. Electronic address:
Botrytis cinerea is the causal agent of gray mold, which is one of the most widespread and destructive fungal diseases that compromises the productivity and quality of grapes produced throughout the world. This work aimed to verify, for the first time, the impact of unencapsulated carvacrol and encapsulated in Eudragit® nanocapsules (Eud-Carv NCs) and chia mucilage (Chia-Carv NCs) on mycelial growth and spore germination of B. cinerea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!