Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients' capability to live independently. Virtual Reality (VR) based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control). Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month) and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988851 | PMC |
http://dx.doi.org/10.3389/fpsyg.2018.00854 | DOI Listing |
NPJ Syst Biol Appl
January 2025
Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.
Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, CAMS&PUMC (Chinese Academy of Medical Sciences and Peking Union Medical College), Beijing, 100144, China.
Background: Bibliometric analyses of software applications in plastic surgery are relatively limited. This study aims to address this gap by summarizing current research trends and providing insights that may guide future developments in this field.
Methods: Data were retrieved from the Web of Science Core Collection.
J Prosthodont Res
January 2025
Department of Dysphagia Rehabilitation, Division of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Patients: Three residents of a long-term care home volunteered to participate in a rehabilitation program involving a virtual reality blowgun game. The participants played the game 5 days a week as a new exercise routine. After 4 weeks of intervention, tongue pressure and forced expiratory volume in 1 s improved in all participants.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Background: Extended reality (XR) technologies are increasingly being used to reduce health and procedural anxieties. The global effectiveness of these interventions is uncertain, and there is a lack of understanding of how patient outcomes might vary between different contexts and modalities.
Objective: This research used panoramic meta-analysis to synthesize evidence across the diverse clinical contexts in which XR is used to address common outcomes of health and procedural anxiety.
Retina
January 2025
Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
Purpose: To describe an accessible method of structure-function correlation using optical coherence tomography (OCT) and virtual reality perimetry (VRP) for patients with retinal disease and glaucoma and to compare results with those of conventional Humphrey visual fields (HVF).
Methods: Patients with a diagnosis of glaucoma involving the central visual field or macula-involving retinal disease were recruited. Patients underwent ophthalmic examination followed by OCT imaging, HVF, and VRP testing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!