A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Radiated Deep-frozen Xenogenic Meniscal Tissue Regenerated the Total Meniscus with Chondroprotection. | LitMetric

Meniscal allograft transplantation yields good and excellent results but is limited by donor availability. The purpose of the study was to evaluate the effectiveness of radiated deep-frozen xenogenic meniscal tissue (RDF-X) as an alternative graft choice in meniscal transplantation. The xenogenic meniscal tissues were harvested from the inner 1/3 part of the porcine meniscus and then irradiated and deeply frozen. The medial menisci of rabbits were replaced by the RDF-X. Meniscal allograft transplantation, meniscectomy and sham operation served as controls. Only a particular kind of rabbit-anti-pig antibody (molecular ranging 60-80 kD) was detected in the blood serum at week 2. The menisci of the group RDF-X grossly resembled the native tissue and the allograft meniscus with fibrocartilage regeneration at postoperative 1 year. Cell incorporation and the extracellular matrix were mostly observed at the surface and the inner 1/3 part of the newly regenerated RDF-X, which was different from the allograft. The biomechanical properties of the group RDF-X were also approximate to those of the native meniscus except for the compressive creep. In addition, chondroprotection was achieved after the RDF-X transplantation although the joint degeneration was not completely prevented. To conclude, the RDF-X could be a promising alternative for meniscal transplantation with similar tissue regeneration capacity to allograft transplantation and superior chondroprotection. The potential minor immunological rejection should be further studied before its clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998046PMC
http://dx.doi.org/10.1038/s41598-018-27016-wDOI Listing

Publication Analysis

Top Keywords

xenogenic meniscal
12
allograft transplantation
12
radiated deep-frozen
8
deep-frozen xenogenic
8
meniscal tissue
8
meniscal allograft
8
meniscal transplantation
8
inner 1/3
8
group rdf-x
8
meniscal
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!