Leptomeningeal metastases (LM) are a serious complication of cancer in the central nervous system (CNS) and are diagnosed in approximately 5% of patients with solid tumors. Effective treatment using systemically administered therapeutics is hindered by the barriers of the CNS. Ultrasound can mediate delivery of drugs through these barriers. The goal of this study was to test the feasibility of using ultrasound-mediated drug delivery to improve the treatment of LM. LM was induced in the spinal cord of athymic rats by injecting HER2-expressing breast cancer cells into the subarachnoid space of the thoracic spine. Animals were divided into three groups: no treatment (n = 5), trastuzumab only (n = 6) or trastuzumab + focused ultrasound + microbubbles (FUS + MBs) (n = 7). Animals in groups 2 and 3 were treated weekly with intravenous trastuzumab +/- FUS + MBs for three weeks. Suppression in tumor growth was qualitatively observed by MRI in the group receiving ultrasound, and was confirmed by a significant difference in the tumor volume measured from the histology data (25 ± 17 mm vs 8 ± 5 mm, p = 0.04 in the trastuzumab-only vs trastuzumab + FUS + MBs). This pilot study demonstrates the potential of ultrasound-mediated drug delivery as a novel treatment for LM. Future studies will extend this work to larger cohorts and the investigation of LM arising from other cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998139PMC
http://dx.doi.org/10.1038/s41598-018-27335-yDOI Listing

Publication Analysis

Top Keywords

drug delivery
12
leptomeningeal metastases
8
ultrasound-mediated drug
8
treatment
5
preliminary investigation
4
investigation focused
4
focused ultrasound-facilitated
4
ultrasound-facilitated drug
4
delivery
4
delivery treatment
4

Similar Publications

Intrauterine Adhesions (IUA) are a significant cause of infertility and miscarriage, often resulting from trauma to the endometrium. While hysteroscopic adhesiolysis is the primary treatment, the use of hydrogels as anti-adhesion barriers and drug delivery systems is gaining traction for improving patient outcomes. This review aims to explore various hydrogel types, their role in tissue repair, and the integration of stem cell therapy.

View Article and Find Full Text PDF

Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.

View Article and Find Full Text PDF

Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management - a comprehensive review.

Cancer Chemother Pharmacol

January 2025

Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.

Introduction: Gynecological cancers, such as ovarian, cervical, and endometrial malignancies, are notoriously challenging due to their intricate biology and the critical need for precise diagnostic and therapeutic approaches. In recent years, groundbreaking advances in nanotechnology and nanobots have emerged as game-changers in this arena, offering the promise of a new paradigm in cancer management. This comprehensive review delves into the revolutionary potential of these technologies, showcasing their ability to transform the landscape of gynecological oncology.

View Article and Find Full Text PDF

Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC.

View Article and Find Full Text PDF

Drug-Silica-Cellulose Ternary Matrix for the Oral Delivery of Cyclosporine A: and evaluation.

Pharm Dev Technol

January 2025

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal - 576104, Karnataka, India.

Purpose: Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation via molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!