The exceptional magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) make them promising materials for biomedical applications like hyperthermia, drug targeting and imaging. Easy preparation of SPIONs with the controllable, well-defined properties is a key factor of their practical application. In this work, we report a simple synthesis of Ho-doped SPIONs by the co-precipitation route, with controlled size, shape and magnetic properties. To investigate the influence of the ions ratio on the nanoparticles’ properties, multiple techniques were used. Powder X-ray diffraction (PXRD) confirmed the crystallographic structure, indicating formation of an Fe₃O₄ core doped with holmium. In addition, transmission electron microscopy (TEM) confirmed the correlation of the crystallites’ shape and size with the experimental conditions, pointing to critical holmium content around 5% for the preparation of uniformly shaped grains, while larger holmium content leads to uniaxial growth with a prism shape. Studies of the magnetic behaviour of nanoparticles show that magnetization varies with changes in the initial Ho ions percentage during precipitation, while below 5% of Ho in doped Fe₃O₄ is relatively stable and sufficient for biomedicine applications. The characterization of prepared nanoparticles suggests that co-precipitation is a simple and efficient technique for the synthesis of superparamagnetic, Ho-doped SPIONs for hyperthermia application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027423PMC
http://dx.doi.org/10.3390/nano8060430DOI Listing

Publication Analysis

Top Keywords

magnetic properties
8
ho-doped spions
8
holmium content
8
spions
5
easy synthesis
4
synthesis characterization
4
characterization holmium-doped
4
holmium-doped spions
4
spions exceptional
4
exceptional magnetic
4

Similar Publications

Abnormal resting-state brain network dynamics in toddlers with autism spectrum disorder.

Eur Child Adolesc Psychiatry

January 2025

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Emerging evidence suggests aberrant functional connectivity (FC) of brain networks in children, adolescents, and adults with autism spectrum disorder (ASD). However, little is known about alterations of dynamic FC in toddlers with ASD. The aim of this study was to investigate the characteristics of brain network dynamics in ASD toddlers.

View Article and Find Full Text PDF

Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).

View Article and Find Full Text PDF

Interfacial Strain-Driven Large Topological Hall Effects in Supermalloy Thin Films with Noncoplanar Spin Textures.

ACS Appl Mater Interfaces

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.

View Article and Find Full Text PDF

4D-Printed Magnetic Responsive Bilayer Hydrogel.

Nanomaterials (Basel)

January 2025

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Despite its widespread application in targeted drug delivery, soft robotics, and smart screens, magnetic hydrogel still faces challenges from lagging mechanical performance to sluggish response times. In this paper, a methodology of in situ generation of magnetic hydrogel based on 3D printing of poly-N-isopropylacrylamide (PNIPAM) is presented. A temperature-responsive PNIPAM hydrogel was prepared by 3D printing, and FeO magnetic particles were generated in situ within the PNIPAM network to generate the magnetic hydrogel.

View Article and Find Full Text PDF

Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m to 1400 kJ/m, achieved by modulating the concentrations of acrylamide (AM) and FeO nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!