The present study used isometric tension recording to investigate the vasorelaxant effect of limonene (LM), carveol (CV), and perillyl alcohol (POH) on contractility parameters of the rat aorta, focusing in particular on the structure-activity relationship. LM, CV, and POH showed a reversible inhibitory effect on the contraction induced by electromechanical and pharmacomechanical coupling. In the case of LM, but not CV and POH, this effect was influenced by preservation of the endothelium. POH and CV but not LM exhibited greater pharmacological potency on BayK-8644-induced contraction and on electromechanical coupling than on pharmacomechanical coupling. In endothelium-denuded preparations, the order of pharmacological potency on electrochemical coupling was LM < CV < POH. These compounds inhibited also, with grossly similar pharmacological potency, the contraction induced by phorbol ester dibutyrate. The present results suggest that LM, CV and POH induced relaxant effect on vascular smooth muscle by means of different mechanisms likely to include inhibition of PKC and IP3 pathway. For CV and POH, hydroxylated compounds, it was in electromechanical coupling that the greater pharmacological potency was observed, thus suggesting a relative specificity for a mechanism likely to be important in electromechanical coupling, for example, blockade of voltage-dependent calcium channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099955PMC
http://dx.doi.org/10.3390/molecules23061430DOI Listing

Publication Analysis

Top Keywords

pharmacological potency
16
electromechanical coupling
12
perillyl alcohol
8
smooth muscle
8
contraction induced
8
pharmacomechanical coupling
8
greater pharmacological
8
poh
7
coupling
6
hydroxyl group
4

Similar Publications

Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.

View Article and Find Full Text PDF

Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.

View Article and Find Full Text PDF

Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.

View Article and Find Full Text PDF

Mining Druggable Sites in Influenza A Hemagglutinin: Binding of the Pinanamine-Based Inhibitor M090.

ACS Med Chem Lett

January 2025

Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació - Campus Torribera, Universitat de Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.

Assessing the binding mode of drug-like compounds is key in structure-based drug design. However, this may be challenged by factors such as the structural flexibility of the target protein. In this case, state-of-the-art computational methods can be valuable to explore the linkages between structural and pharmacological data.

View Article and Find Full Text PDF

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!