A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A bottom-up approach for controlled deformation of carbon nanotubes through blistering of supporting substrate surface. | LitMetric

A bottom-up approach for controlled deformation of carbon nanotubes through blistering of supporting substrate surface.

Nanotechnology

Department of Physics, University of Crete, Heraklion, 71003, Greece. Laboratory of Computational Design of Nanostructures, Nanodevices and Nanotechnologies, Research Institute for the Development of Scientific and Educational Potential of Youth, Aviatorov Street 14/55, Moscow 119620, Russia.

Published: September 2018

Tuning the band structure and, in particular, gap opening in 1D and 2D materials through their deformation is a promising approach for their application in modern semiconductor devices. However, there is an essential breach between existing laboratory scale methods applied for deformation of low-dimensional materials and the needs of large-scale production. In this work, we propose a novel method which is potentially well compatible with high end technological applications: single-walled carbon nanotubes (SWCNTs) first deposited on the flat surface of a supporting wafer, which has been pre-implanted with H and He ions, are deformed in a controlled and repetitive manner over blisters formed after subsequent thermal annealing. By using resonant Raman spectroscopy, we demonstrate that the SWCNTs clamped by metallic stripes at their ends are deformed over blisters to an average tensile strain of 0.15 ± 0.03%, which is found to be in a good agreement with the value calculated taking into account blister's dimensions. The principle of the technique may be applied to other 1D and 2D materials in perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aacc5dDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
bottom-up approach
4
approach controlled
4
controlled deformation
4
deformation carbon
4
nanotubes blistering
4
blistering supporting
4
supporting substrate
4
substrate surface
4
surface tuning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!