The current electrophysiological study investigated the functional roles of high- and low-voltage-activated Ca channel subtypes on glutamatergic small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons. Experiments combining both the "synapse bouton" preparation and single-pulse focal stimulation technique were performed using the conventional whole cell patch configuration under voltage-clamp conditions. Nifedipine, at a high concentration, and BAY K 8644 inhibited and facilitated the glutamatergic excitatory postsynaptic currents (eEPSCs) that were evoked by 0.2-Hz stimulation, respectively. However, these drugs had no effects on spontaneous EPSCs (sEPSCs). Following the use of a high stimulation frequency of 3 Hz, however, nifedipine markedly inhibited eEPSCs at the low concentration of 0.3 µM. Moreover, ω-conotoxin GVIA and ω-agatoxin IVA significantly inhibited both sEPSCs and eEPSCs. Furthermore, SNX-482 slightly inhibited eEPSCs. R(-)-efonidipine had no effects on either sEPSCs or eEPSCs. It was concluded that glutamate release from SMFTs depends largely on Ca entry through N- and P/Q-type Ca channels and, to a lesser extent, on R-type Ca channels. The contribution of L-type Ca channels to eEPSCs was small at low-firing SMFTs but more significant at high-firing SMFTs. T-type Ca channels did not appear to be involved in neurotransmission at SMFTs. NEW & NOTEWORTHY Action potential-evoked glutamate release from small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons is regulated by high-threshold but not low-threshold Ca channel subtypes. The functional contribution mainly depends on N- and P/Q-type Ca channels and, to a lesser extent, on R-type Ca channels. However, in SMFTs stimulated at a high 3-Hz frequency, L-type Ca channels contributed significantly to the currents. The present results are consistent with previous findings from fluorometric studies of large mossy fiber boutons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00571.2017 | DOI Listing |
Eur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Neurosurgery, Freiburg University Medical Center, Breisacher Str. 64, 79106 Freiburg, Germany.
Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.
For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA.
Introduction: We investigated whether the cerebellum develops neuropathology that correlates with well-accepted Alzheimer's disease (AD) neuropathological markers and cognitive status.
Methods: We studied cerebellar cytoarchitecture in a cohort (N = 30) of brain donors. In a larger cohort (N = 605), we queried whether the weight of the contents of the posterior fossa (PF), which contains primarily cerebellum, correlated with dementia status.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!