Background: Hippocampal abnormalities have been largely reported in patients with schizophrenia and bipolar disorder, and are considered to be involved in the pathophysiology of the psychosis. The hippocampus consists of several subfields but it remains unclear their involvement in the early stages of psychosis.

Aim: The aim of this study was to investigate volumetric alterations in hippocampal subfields in patients at the first-episode psychosis (FEP).

Methods: Magnetic resonance imaging (MRI) data were collected in 134 subjects (58 FEP patients; 76 healthy controls [HC]). A novel automated hippocampal segmentation algorithm was used to segment the hippocampal subfields, based on an atlas constructed from ultra-high resolution imaging on ex vivo hippocampal tissue. The general linear model was used to investigate volume differences between FEP patients and HC, with age, gender and total intracranial volume as covariates.

Results: We found significantly lower volumes of bilateral CA1, CA4, and granule cell layer (GCL), and of left CA3, and left molecular layer (ML) in FEP patients compared to HC. Only the volumes of the left hippocampus and its subfields were significantly lower in FEP than HC at the False Discovery Rate (FDR) of 0.1. No correlation was found between hippocampal subfield volume and duration of illness, age of onset, duration of medication, and Positive and Negative Syndrome Scale (PANSS).

Conclusion: We report abnormally low volumes of left hippocampal subfields in patients with FEP, sustaining its role as a putative neural marker of psychosis onset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890476PMC
http://dx.doi.org/10.1093/schbul/sbx108DOI Listing

Publication Analysis

Top Keywords

hippocampal subfields
12
fep patients
12
hippocampal
8
hippocampal subfield
8
patients first-episode
8
first-episode psychosis
8
subfields patients
8
volumes left
8
patients
7
subfields
5

Similar Publications

Walking and Hippocampal Formation Volume Changes: A Systematic Review.

Brain Sci

January 2025

Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK.

Background/objectives: Sustaining the human brain's hippocampus from atrophy throughout ageing is critical. Exercise is proven to be effective in promoting adaptive hippocampal plasticity, and the hippocampus has a bidirectional relationship with the physical environment. Therefore, this systematic review explores the effects of walking, a simple physical activity in the environment, on hippocampal formation volume changes for lifelong brain and cognitive health.

View Article and Find Full Text PDF

Prenatal exposure to polycyclic aromatic hydrocarbons, reduced hippocampal subfield volumes, and word reading.

Dev Cogn Neurosci

January 2025

Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, United States; The Child Mind Institute, New York, NY, United States. Electronic address:

Reading difficulties and exposure to air pollution are both disproportionately high among youth living in economically disadvantaged contexts. Critically, variance in reading skills in youth living in higher socioeconomic status (SES) contexts largely derives from genetic factors, whereas environmental factors explain more of the variance in reading skills among youth living in lower SES contexts. Although reading research has focused closely on the psychosocial environment, little focus has been paid to the effects of the chemical environment.

View Article and Find Full Text PDF

Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients share similar symptoms including post-exertional malaise, neurocognitive impairment, and memory loss. The neurocognitive impairment in both conditions might be linked to alterations in the hippocampal subfields. Therefore, this study compared alterations in hippocampal subfields of 17 long COVID, 29 ME/CFS patients, and 15 healthy controls (HC).

View Article and Find Full Text PDF

Developmental exposure to legacy environmental contaminants, medial temporal lobe volumes and spatial navigation memory in late adolescents.

Environ Res

January 2025

Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de La Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. Electronic address:

Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory.

View Article and Find Full Text PDF

Multi-scale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence from Cushing's Disease.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:

Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!