Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii.

Food Funct

College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.

Published: July 2018

Pleurotus eryngii contains bioactive compounds that can activate the immune system. Here we report the identification, purification, and functional characterization of the bioactive P. eryngii protein (PEP) 1b. PEP 1b was discovered to be a 21.9 kDa protein with the ability to induce the M1-polarization of the macrophage cell line RAW 264.7 cells. Biochemical measurements showed that PEP 1b stimulated nitric oxide (NO), IL-1β, IL-6 and TNF-α production and regulated inducible NO synthase. Phosphorylation and inhibitor studies revealed that PEP 1b promoted the translocation of NF-kB from the cytosol to the nucleus allowing the induction of target gene expression and NO production. The phosphorylation of JNK and ERK1/2 was found to be necessary for NO production. Each phosphorylation pathway was found to require a Toll-like receptor (TLR) 4 as a prerequisite for PEP 1b-induced NO production. This study suggests that PEP 1b is an immunomodulatory protein that can boost cellular immune responses through the activation of the TLR4-NF-κB and MAPK signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo00604kDOI Listing

Publication Analysis

Top Keywords

functional characterization
8
immunomodulatory protein
8
pleurotus eryngii
8
production phosphorylation
8
pep
6
purification identification
4
identification functional
4
characterization immunomodulatory
4
protein
4
protein pleurotus
4

Similar Publications

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!