Uniform Ba0.18Ce0.82F2.82 nanospheres have been obtained after aging a solution of barium and cerium nitrates and sodium tetrafluoroborate in a mixture of ethylene glycol and water at 120 °C for 20 hours. The diameter of the spheres could be tailored from 65 nm to 80 nm by varying the NaBF4 concentration while maintaining their colloidal stability in aqueous suspension. Increasing the aging temperature led to a phase transformation from hexagonal to cubic symmetry and to a concomitant increase of the Ba/Ce ratio, which reached a value close to the nominal one (50/50) at 240 °C. The same method was successful in obtaining Tb3+-doped nanospheres with homogeneous cation distribution and the same morphological features as the undoped material. An intense green emission was observed after the excitation of the Tb3+-doped samples through the Ce3+-Tb3+ energy transfer (ET) band. The ET efficiency increased with increasing Tb content, the maximum emission being observed for the 10% Tb-doped nanospheres. Aqueous suspensions of the latter sample showed excellent X-ray attenuation values that were superior to those of an iodine-based clinically approved contrast agent. Their fluorescence and X-ray attenuation properties make this material a potential dual bioprobe for luminescence bioimaging and X-ray computed tomography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt01202d | DOI Listing |
Med Phys
January 2025
National Institute for Mathematical Sciences, Daejeon, Republic of Korea.
Background: In X-ray computed tomography (CT), metal-induced beam hardening artifacts arise from the complex interactions between polychromatic X-ray beams and metallic objects, leading to degraded image quality and impeding accurate diagnosis. A previously proposed metal-induced beam hardening correction (MBHC) method provides a theoretical framework for addressing nonlinear artifacts through mathematical analysis, with its effectiveness demonstrated by numerical simulations and phantom experiments. However, in practical applications, this method relies on precise segmentation of highly attenuating materials and parameter estimations, which limit its ability to fully correct artifacts caused by the intricate interactions between metals and other dense materials, such as bone or teeth.
View Article and Find Full Text PDFStroke
January 2025
Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Inserm U1266, Université Paris Cité, France (J.-C.B.).
Background: A minority of patients with stroke qualify for intravenous thrombolysis (IVT) within 4.5-hour window. The safety and efficacy of IVT beyond this period have not been well studied.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Transcranial ultrasound stimulation (TUS) presents challenges in ultrasound wave transmission through the skull, affecting study outcomes due to aberration and attenuation. While planning strategies incorporating 3D computed tomography (CT) scans help mitigate these issues, they expose participants to radiation, which can raise ethical concerns. A solution involves generating skull masks from participants' anatomical magnetic resonance imaging (MRI).
View Article and Find Full Text PDFTrials
January 2025
Université Côte d'Azur, CNRS, LP2M, Nice, France.
Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.
Purpose: Posterior fossa ring-enhancing lesions (PFREL) in the adult immunocompetent hosts pose a diagnostic challenge. We aimed to evaluate the spectrum of PFREL etiologies and propose a diagnostic algorithm.
Methods: This study involved a retrospective analysis of PFREL cases from our institution (January 2023 to April 2024) and a systematic literature review conducted using Embase and PubMed databases following the PRISMA 2020 guidelines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!