We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT) (90 intervals of 6 s cycling at 250% maximum power, P/24 s) on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END) and between the two training sets (intermediate, INT). The mRNA expression levels of myosin heavy chain (MHC) isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (P) was increased, whereas O was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% P at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/β to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987183PMC
http://dx.doi.org/10.3389/fphys.2018.00601DOI Listing

Publication Analysis

Top Keywords

mrna expression
16
second training
16
training set
16
high intensity
8
intensity high
8
high volume
8
volume interval
8
training
8
interval training
8
complete slow-to-fast
8

Similar Publications

The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.

Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!