In this work we investigated the time behavior of the polarization of bulk C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aacc32 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Patras, Patras 265 04, Greece.
A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.
Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri.
Importance: Both sickle cell anemia (SCA) and socioeconomic status have been associated with altered brain structure and cognitive disability, yet precise mechanisms underlying these associations are unclear.
Objective: To determine whether brains of individuals with and without SCA appear older than chronological age and if brain age modeling using brain age gap (BAG) can estimate cognitive outcomes and mediate the association of socioeconomic status and disease with these outcomes.
Design, Setting, And Participants: In this cross-sectional study of 230 adults with and without SCA, individuals underwent brain magnetic resonance imaging (MRI) and cognitive assessment.
Phys Chem Chem Phys
January 2025
College of Physics, Sichuan University, Chengdu, 610065, China.
Magnetic semiconductors with spin-polarized non-metallic atoms are usually overlooked in applications because of their poor performances in magnetic moments and under critical temperatures. Herein, magnetic characteristics of 2D pentagon-based XN (X = B, Al, and Ga) are revealed based on first-principles calculations. It was proven that XN structures are antiferromagnetic semiconductors with bandgaps of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!