AI Article Synopsis

Article Abstract

Although significant progress has been made in the diagnosis and treatment of gastric cancer, the overall survival rate of the disease remains unchanged at approximately 20%-25%. Thus, there is an urgent need for a better understanding of the molecular biology aspects of the disease in the hope of discovering novel diagnosis and treatment strategies. Recent years have witnessed decisive roles of aberrant cancer cell metabolism in the maintenance of malignant hallmarks of cancers, and cancer cell metabolism has been regarded as a novel target for the treatment of cancer. CDK2, a cell cycle-dependent kinase that usually regulates cell cycle progression and the DNA damage response, is reported to be upregulated in many cancers. However, little is known about its role in cancer cell metabolism. In the present study, we showed that silencing CDK2 inhibited the aerobic glycolytic capacity of gastric cancer cell lines. Mechanism explorations showed that silencing CDK2 increased expression of the SIRT5 tumor suppressor. In addition, the physiological roles of SIRT5 in the regulation of proliferation and glycolysis were studied in gastric cancer cells. Taken together, the present study uncovered novel roles of the CDK2/SIRT5 axis in gastric cancer and suggests future studies concerning gastric cancer cell metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6113437PMC
http://dx.doi.org/10.1111/cas.13691DOI Listing

Publication Analysis

Top Keywords

gastric cancer
24
cancer cell
20
cell metabolism
16
cancer
10
diagnosis treatment
8
silencing cdk2
8
cell
7
gastric
6
cdk2
4
cdk2 positively
4

Similar Publications

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

ASO Visual Abstract: Effect of Minimally Invasive Versus Open Distal Gastrectomy on Long-Term Survival in Patients with Gastric Cancer: Individual Patient Data Meta-analysis.

Ann Surg Oncol

January 2025

Division of General Surgery, Department of Biomedical Science for Health, IRCCS Galeazzi - Sant'Ambrogio Hospital, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Milan, Italy.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

Background: The methyltransferase gene family is known for its diverse biological functions and critical role in tumorigenesis. This study aimed to identify these family genes in common gastrointestinal (GI) cancers using comprehensive methodologies.

Methods: Gene identification involved analysis of scientific literature and insights from The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Gold Nanorods Decorated by Conjugated Microporous Polymers for Infrared Responsive Cytostatic Drug Delivery.

Langmuir

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.

Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!