We report unusual photophysical properties observed on two newly designed 3-hydroxychromone derivatives exhibiting the excited-state intramolecular proton transfer (ESIPT) reaction. The efficiency of ESIPT reaction is greatly enhanced upon excitation with high energy quanta to S ( > 1) levels in low-polarity solvents. Based on detailed analyses of excitation and emission spectra as well as time-resolved emission kinetics we derive that conditions, in which this phenomenon contradicting Kasha's rule is observed, are quite different from that for observation of anti-Kasha emission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952995PMC
http://dx.doi.org/10.1039/c5sc01945aDOI Listing

Publication Analysis

Top Keywords

excited-state intramolecular
8
esipt reaction
8
intramolecular proton-transfer
4
proton-transfer reaction
4
reaction demonstrating
4
demonstrating anti-kasha
4
anti-kasha behavior
4
behavior report
4
report unusual
4
unusual photophysical
4

Similar Publications

Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications.

View Article and Find Full Text PDF

We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.

View Article and Find Full Text PDF

Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)] (1) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process.

View Article and Find Full Text PDF

Excited-state intramolecular proton transfer (ESIPT) reactions are one of the fundamental energy transformation reactions in catalysis and biological process. The combining ESIPT with the twisted intramolecular charge transfer (TICT) brings the richness of optical, photoelectronic performances to certain functional compounds. Delineating the mechanism of ESIPT + TICT reactions and further understanding why a specific functional group dominates are fundamentally crucial for the design and application of the functionally photoelectric materials.

View Article and Find Full Text PDF

Pyrano[2,3-]pyrazole derivatives are a class of compounds exhibiting dual solvent-dependent fluorescence. This interesting and potentially useful optical property is attributed to the excited state intramolecular proton transfer (ESIPT). We have investigated excited state dynamics of these molecules in detail using femtosecond time-resolved fluorescence and transient absorption spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!