Effects of ozone stimulation of bronchial epithelial cells on proliferation and collagen synthesis of co-cultured lung fibroblasts.

Exp Ther Med

Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China.

Published: June 2018

Ozone (O) as a major air pollutant is widely recognized for causing pathological changes of the airway system. However, it is not clear whether O exposure of bronchial epithelial cells (BECs) influences the proliferation and collagen synthesis of submucosal fibroblasts and contributes to the pathogenesis of airway remodeling in diseases, including asthma. In the present study, a co-culture method was applied to culture human lung fibroblasts (HLFs) with human bronchial epithelial cells (HBECs) that were pre-stimulated with O. Following co-culture for up to 24 h, the proliferation of HLFs was measured using MTT colorimetry. Furthermore, the collagen synthesis capacity of HLFs was determined by the level of hydroxyproline. In addition, the protein expression levels of cytokines, including transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) were assessed. Results indicated that the proliferation of HLFs co-cultured with HBECs was significantly inhibited when compared with HLFs cultured alone (P<0.05). By contrast, co-culture with O-stimulated HBECs significantly promoted the proliferation of HLFs compared with the HLFs cultured alone or those cultured with HBECs but no O stimulation, respectively (P<0.05 and P<0.01). Furthermore, similar effects were observed regarding the collagen synthesis capacity of HLFs co-cultured with HBECs for 24. In the supernatant, TGF-β1 concentration was continuously increased over 24 h, whereas the concentration of PGE2 increased and plateaued between 12 to 24 h and TNF-α concentration was not significantly altered during the assessed time period. To conclude, the present results suggest that O pre-exposure of HBECs may promote the transformation of HLFs from the typical inhibitory state into a promoting state with respect to proliferation and collagen synthesis, which may likely occur through a mechanism that influences the balance between pro- and anti-inflammatory factors, including TGF-β1 and PGE2. The present findings may improve the understanding of the mechanism involved in O-induced airway remodeling from a novel perspective of maintenance/loss of steady-state function of the airway epithelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994781PMC
http://dx.doi.org/10.3892/etm.2018.6122DOI Listing

Publication Analysis

Top Keywords

bronchial epithelial
12
epithelial cells
12
collagen synthesis
12
proliferation collagen
8
lung fibroblasts
8
proliferation hlfs
8
hlfs
5
effects ozone
4
ozone stimulation
4
stimulation bronchial
4

Similar Publications

Downregulation of the Phosphatase PHLPP1 Contributes to NNK-induced Malignant Transformation of Human Bronchial Epithelial Cells (HBECs).

J Biol Chem

January 2025

Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China. Electronic address:

Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, and has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues.

View Article and Find Full Text PDF

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays a crucial role in the progression of lung adenocarcinoma (LUAD). However, understanding its dynamic immune and stromal modulation remains a complex challenge. We utilized the ESTIMATE algorithm to evaluate the immune and stromal components of the LUAD TME from the TCGA database.

View Article and Find Full Text PDF

Inula japonica Thunb. and its active compounds ameliorate airway inflammation by suppressing JAK-STAT signaling.

Biomed Pharmacother

January 2025

KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea. Electronic address:

Asthma, a chronic inflammatory disease, remains a global health challenge due to its complex pathophysiology and the limited treatment efficacy. This study explored the effect of Inula japonica Thunb. water extract (IJW) on asthma and its protective mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!