Protein aggregation causes α-synuclein to switch from its physiological role to a pathological toxic gain of function. Under physiological conditions, monomeric α-synuclein improves ATP synthase efficiency. Here, we report that aggregation of monomers generates beta sheet-rich oligomers that localise to the mitochondria in close proximity to several mitochondrial proteins including ATP synthase. Oligomeric α-synuclein impairs complex I-dependent respiration. Oligomers induce selective oxidation of the ATP synthase beta subunit and mitochondrial lipid peroxidation. These oxidation events increase the probability of permeability transition pore (PTP) opening, triggering mitochondrial swelling, and ultimately cell death. Notably, inhibition of oligomer-induced oxidation prevents the pathological induction of PTP. Inducible pluripotent stem cells (iPSC)-derived neurons bearing SNCA triplication, generate α-synuclein aggregates that interact with the ATP synthase and induce PTP opening, leading to neuronal death. This study shows how the transition of α-synuclein from its monomeric to oligomeric structure alters its functional consequences in Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997668PMC
http://dx.doi.org/10.1038/s41467-018-04422-2DOI Listing

Publication Analysis

Top Keywords

atp synthase
20
interact atp
8
permeability transition
8
transition pore
8
parkinson's disease
8
ptp opening
8
α-synuclein
6
atp
5
synthase
5
α-synuclein oligomers
4

Similar Publications

The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.

View Article and Find Full Text PDF

Hypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.

View Article and Find Full Text PDF

High Glucose Inhibits O-GlcNAc Transferase Translocation in Early Osteoblast Differentiation by Altering Protein Phosphatase 2A Activity.

J Cell Physiol

January 2025

Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!