The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027167 | PMC |
http://dx.doi.org/10.3390/nano8060425 | DOI Listing |
Plants (Basel)
January 2025
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.
View Article and Find Full Text PDFLangmuir
November 2024
Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States.
Int J Biol Macromol
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China. Electronic address:
In photodynamic therapy (PDT), reactive oxygen species (ROS) are key products that induce cell death, and increasing amount of ROS is a crucial way to enhance PDT efficacy. However, the generated ROS stimulates the transient receptor potential vanilloid 1 channel (TRPV1), which can be activated in the pain pathway and then exacerbate pain. Herein, we utilized arginine-glycine-aspartate (RGD) peptide-modified liposomes for encapsulation Chlorin e6 (Ce6) and capsazepine (Cz), a receptor antagonist of TRPV1, to prepare drug-loaded liposomes, RLCC.
View Article and Find Full Text PDFAdv Cancer Res
September 2024
Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States. Electronic address:
Food Chem
December 2024
Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
The biocompatible MIL-88A metal-organic framework (MOF), synthesized from food-grade fumaric acid and ferric chloride, was introduced for the efficient one-step in situ encapsulation of capsaicinoids as a nanopreservative. The resulting MIL-88A@Caps nanoparticles can load 61.43 mg/g of capsaicinoids, surpassing conventional MOF-based encapsulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!