Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether -acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022934PMC
http://dx.doi.org/10.3390/biology7020034DOI Listing

Publication Analysis

Top Keywords

carbamyl group
24
transfer carbamyl
16
carbamyl phosphate
12
cps cps
12
group
10
carbamyl
9
phosphate
8
phosphate cyanate
8
carbamate kinase
8
donate carbamyl
8

Similar Publications

We report a general approach for efficient deuteration of the metabolically labile α-C-H bonds of widespread amides and amines. Temporarily masking the secondary amine group as a carbamate allows an unprecedented photoredox hydrogen atom transfer-promoted α-carbamyl radical formation for efficient H/D exchange with DO. The mild protocol delivers structurally diverse α-deuterated secondary amines including "privileged" piperidine and piperazine structures highly regioselectively with excellent levels of deuterium incorporation (≤100%).

View Article and Find Full Text PDF

N-acetylglutamate synthase (NAGS) makes acetylglutamate, the essential activator of the first, regulatory enzyme of the urea cycle, carbamoyl phosphate synthetase 1 (CPS1). NAGS deficiency (NAGSD) and CPS1 deficiency (CPS1D) present identical phenotypes. However, they must be distinguished, because NAGSD is cured by substitutive therapy with the N-acetyl-L-glutamate analogue N-carbamyl-L-glutamate, while curative therapy of CPS1D requires liver transplantation.

View Article and Find Full Text PDF

Treatment and management for children with urea cycle disorder in chronic stage.

Zhejiang Da Xue Xue Bao Yi Xue Ban

October 2023

Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

Urea cycle disorder (UCD) is a group of inherited metabolic diseases with high disability or fatality rate, which need long-term drug treatment and diet management. Except those with Citrin deficiency or liver transplantation, all pediatric patients require lifelong low protein diet with safe levels of protein intake and adequate energy and lipids supply for their corresponding age; supplementing essential amino acids and protein-free milk are also needed if necessary. The drugs for long-term use include nitrogen scavengers (sodium benzoate, sodium phenylbutyrate, glycerol phenylbutyrate), urea cycle activation/substrate supplementation agents (-carbamylglutamate, arginine, citrulline), etc.

View Article and Find Full Text PDF

The Role of Carbamoyl Phosphate Synthetase 1 as a Prognostic Biomarker in Patients With Acetaminophen-induced Acute Liver Failure.

Clin Gastroenterol Hepatol

November 2023

Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI. Electronic address:

Background & Aims: Carbamoyl phosphate synthetase 1 (CPS1) is a highly abundant mitochondrial urea cycle enzyme that is expressed primarily in hepatocytes. CPS1 is constitutively and physiologically secreted into bile but is released into the bloodstream upon acute liver injury (ALI). Given its abundance and known short half-life, we tested the hypothesis that it may serve as a prognostic serum biomarker in the setting of acute liver failure (ALF).

View Article and Find Full Text PDF

Antifungal Activity and Alleviation of Salt Stress by Volatile Organic Compounds of Native Obtained from .

Plants (Basel)

March 2023

INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET-Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto 5800, Argentina.

As salt stress has a negative impact on plant growth and crop yield, it is very important to identify and develop any available biotechnology which can improve the salt tolerance of plants. Inoculation with plant-growth-promoting rhizobacteria (PGPR) is a proven environmentally friendly biotechnological resource for increasing the salt stress tolerance of plants and has a potential in-field application. In addition, bacterial volatile organic compounds (mVOCs) are signal molecules that may have beneficial roles in the soil-plant-microbiome ecosystem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!