Mcl-1, a prosurvival Bcl-2 family protein, is frequently overexpressed in cancer cells and plays a critical role in therapeutic resistance. It is well known that anticancer agents induce phosphorylation of Mcl-1, which promotes its binding to E3 ubiquitin ligases and subsequent proteasomal degradation and apoptosis. However, other functions of Mcl-1 phosphorylation in cancer cell death have not been well characterized. In this study, we show in colon cancer cells that histone deacetylase inhibitors (HDACi) induce GSK3β-dependent Mcl-1 phosphorylation, but not degradation or downregulation. The and anticancer effects of HDACi were dependent on Mcl-1 phosphorylation and were blocked by genetic knock-in of a Mcl-1 phosphorylation site mutant. Phosphorylation-dead Mcl-1 maintained cell survival by binding and sequestering BH3-only Bcl-2 family proteins PUMA, Bim, and Noxa, which were upregulated and necessary for apoptosis induction by HDACi. Resistance to HDACi mediated by phosphorylation-dead Mcl-1 was reversed by small-molecule Mcl-1 inhibitors that liberated BH3-only proteins. These results demonstrate a critical role of Mcl-1 phosphorylation in mediating HDACi sensitivity through a novel and degradation-independent mechanism. These results provide new mechanistic insights on how Mcl-1 maintains cancer cell survival and suggest that Mcl-1-targeting agents are broadly useful for overcoming therapeutic resistance in cancer cells. These findings present a novel degradation-independent function of Mcl-1 phosphorylation in anticancer therapy that could be useful for developing new Mcl-1-targeting agents to overcome therapeutic resistance. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298746 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-18-0399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!