In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.

Drug Res (Stuttg)

Division of Product Development, PT. Novell Pharmaceutical Laboratories, Jakarta, Indonesia.

Published: November 2018

Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-0635-8246DOI Listing

Publication Analysis

Top Keywords

in-vitro equilibrium
12
binding study
12
sevelamer carbonate
8
uv-vis spectrophotometry
8
demonstrating bioequivalence
8
equilibrium binding
8
equilibrium phosphate
4
binding
4
phosphate binding
4
sevelamer
4

Similar Publications

Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.

View Article and Find Full Text PDF

Biosynthetic small molecule antigens mimics medicated lateral flow immunoassay for mycotoxin Fumonisin B using nanobody fusion proteins.

J Hazard Mater

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; In Vitro Diagnostic Technology Innovation Center for Nanobody, No. 1166 Yiyuan Road, Nanchang, Jiangxi Province 330038, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Nanchang 330200, China. Electronic address:

Lateral flow immunoassays (LFAs) are widely used in point-of-care testing (POCT) for detecting small molecules. However, their application is often hindered by the complex synthesis of traditional chemically synthesized antigens. Nanobody-based coating antigen mimics have shown excellent analytical performance in various immunoassay platforms, but their application in LFAs still faces challenges.

View Article and Find Full Text PDF

The simulation of antral conditions for estimating drug apparent equilibrium solubility after a high-calorie, high-fat meal is challenging. In this study, (1) we measured the apparent equilibrium solubility of two model lipophilic drugs, ketoconazole and danazol, in antral aspirates collected at various time points after a minced high-calorie, high-fat meal and a glass of water 30 min after initiation of meal administration, and we designated one point estimate for ketoconazole and one point estimate for danazol; (2) we evaluated the usefulness of FeSSGF-V2 and FEDGAS pH = 3 in reproducing the two point estimates; (3) we evaluated potential compositions of FeSSGF-V3 that simulate the pH, the buffer capacity toward both less acidic and more acidic values, and the antral lipid and protein contents with easily accessible, commercially available products, and (4) we identified the most useful composition of FeSSGF-V3 for reproducing the two point estimates. For both model drugs, apparent solubility in FeSSGF-V2 and in FEDGAS pH 3 deviated substantially from the corresponding point estimate.

View Article and Find Full Text PDF

Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.

View Article and Find Full Text PDF

Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!