Atorvastatin enhances endothelial adherens junctions through promoting VE-PTP gene transcription and reducing VE-cadherin-Y731 phosphorylation.

Vascul Pharmacol

Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China. Electronic address:

Published: June 2019

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is essential for endothelial cells (ECs) adherens junction and vascular homeostasis; however, the regulatory mechanism of VE-PTP transcription is unknown, and a drug able to promote VE-PTP expression in ECs has not yet been reported in the literature. In this study, we used human ECs as a model to explore small molecule compounds able to promote VE-PTP expression, and found that atorvastatin, a HMG-CoA reductase inhibitor widely used in the clinic to treat hypercholesterolemia-related cardiovascular diseases, strongly promoted VE-PTP transcription in ECs through activating the VE-PTP promoter and upregulating the expression of the transcription factor, specificity protein 1 (SP1). Additionally, atorvastatin markedly reduced VE-cadherin-Y731 phosphorylation induced by cigarette smoke extract and significantly enhanced stability of endothelial adherens junctions. Together, our findings reveal that atorvastatin up-regulates VE-PTP expression, increases VE-cadherin protein levels, and decreases VE-cadherin-Y731 phosphorylation to strengthen EC adherens junctions and maintain vascular cell monolayer integrity, offering a new mechanism of atorvastatin against CSE-induced disruption of vascular integrity and relevant cardio-cerebrovascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2018.06.003DOI Listing

Publication Analysis

Top Keywords

adherens junctions
12
ve-cadherin-y731 phosphorylation
12
ve-ptp expression
12
endothelial adherens
8
ve-ptp
8
ve-ptp transcription
8
promote ve-ptp
8
atorvastatin
5
atorvastatin enhances
4
endothelial
4

Similar Publications

The objective of this study is to gain a better understanding of the not well understood egg-transportation mechanisms through the female reproductive systems of crabs. For this, Carcinus maenas was chosen as a model to study the cuticular epithelium underlying the cuticle of the vagina and the ventral seminal receptacle. This cuticular epithelium is investigated by performing histochemical and ultrastructural analyses of the epithelial cells.

View Article and Find Full Text PDF

Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.

View Article and Find Full Text PDF

Epithelial cell cohesion and barrier function critically depend on α-catenin, an actin-binding protein and essential constituent of cadherin-catenin-based adherens junctions. α-catenin undergoes actomyosin force-dependent unfolding of both actin-binding and middle domains to strongly engage actin filaments and its various effectors; this mechanosensitivity is critical for adherens junction function. We previously showed that α-catenin is highly phosphorylated in an unstructured region that links the mechanosensitive middle and actin-binding domains (known as the P-linker region), but the cellular processes that promote α-catenin phosphorylation have remained elusive.

View Article and Find Full Text PDF

Background: Systemic diseases are often associated with endothelial cell (EC) dysfunction. A key function of ECs is to maintain the barrier between the blood and the interstitial space. The integrity of the endothelial cell barrier is maintained by VE-Cadherin homophilic interactions between adjacent cells.

View Article and Find Full Text PDF

Fortilin, a 172-amino acid polypeptide, is a multifunctional protein that interacts with various protein molecules to regulate their functions. Although fortilin has been shown to interact with cytoskeleton proteins such as tubulin and actin, its interactions with the components of adherens junctions remained unknown. Using co-immunoprecipitation western blot analyses, the proximity ligation assay, microscale thermophoresis, and biolayer interferometry, we here show that fortilin specifically interacts with CTNNA3 (α-T-catenin), but not with CTNNA1, CTNNA2, or CTNNB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!