The immune system mounts a response to an infection by activating T cells. T cell activation occurs when dendritic cells, which have already interacted with the pathogen, scan a T cell that is cognate for (responsive to) the pathogen. This often occurs inside lymph nodes. The time it takes for this scanning event to occur, indeed the probability that it will occur at all, depends on many factors, including the rate that T cells and dendritic cells enter and leave the lymph node as well as the geometry of the lymph node and of course other cellular and molecular parameters. In this paper, we develop a hybrid stochastic-deterministic mathematical model at the tissue scale of the lymph node and simulate dendritic cells and cognate T cells to investigate the most important physiological factors leading to a successful and timely immune response after a vaccination. We use an agent-based model to describe the small population of cognate naive T cells and a partial differential equation description for the concentration of mature dendritic cells. We estimate the model parameters based on the known literature and measurements previously taken in our lab. We perform a parameter sensitivity analysis to quantify the sensitivity of the model results to the parameters. The results show that increasing T cell inflow through high endothelial venules, restricting cellular egress via the efferent lymph and increasing the total dendritic cell count by improving vaccinations are the among the most important physiological factors leading to an improved immune response. We also find that increasing the physical size of lymph nodes improves the overall likelihood that an immune response will take place but has a fairly weak effect on the response rate. The nature of dendritic cell trafficking through the LN (either passive or active transport) seems to have little effect on the overall immune response except if a change in overall egress time is observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2018.06.008 | DOI Listing |
ACS Nano
January 2025
Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.
View Article and Find Full Text PDFFront Parasitol
April 2024
INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.
In this editorial, we comment on the article by Mu , published in the recent issue of the . We pay special attention to the immune tolerance mechanism caused by hepatitis B virus (HBV) infection, the pathogenesis of hepatocellular carcinoma (HCC), and the role of antiviral therapy in treating HCC related to HBV infection. HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways, as well as by inhibiting the immune functions of macrophages, natural killer cells and dendritic cells.
View Article and Find Full Text PDFEcancermedicalscience
November 2024
Internal Medicine Service, Sanatorio Sagrado Corazón, Buenos Aires, CP 1039, Argentina.
Plasmacytoid blast dendritic cell neoplasm is a rare subtype of acute leukaemia that represents less than 1% of haematologic neoplasms. It is characterised by skin involvement and leukaemic dissemination in the rest of the body. The immunophenotype is represented by the expression of CD4, CD56 and CD123.
View Article and Find Full Text PDFNarra J
December 2024
Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Systemic lupus erythematosus (SLE) is a prevalent autoimmune disease affecting multiple organ systems. Disease progression is inevitable as part of its natural course, necessitating aggressive therapeutic strategies, particularly with the use of immunosuppressants. Long-term use of steroids and other immunosuppressants is associated with significant adverse effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!