In this work, the effect of humidity and water intercalation on the friction and wear behavior of few-layers of graphene and graphene oxide (GO) was studied using friction force microscopy. Thickness measurements demonstrated significant water intercalation within GO affecting its surface topography (roughness and protrusions), whereas negligible water intercalation of graphene was observed. It was found that water intercalation in GO contributed to wearing of layers at a relative humidity as low as ∼30%. The influence of surface wettability and water adsorption was also studied by comparing the sliding behavior of SiO/GO, SiO/Graphene, and SiO/SiO interfaces. Friction for the SiO/GO interface increased with relative humidity due to water intercalation and condensation of water. In contrast, it was observed that adsorption of water molecules lubricated the SiOSiO interface due to easy shearing of water on the hydrophobic surface, particularly once the adsorbed water layers had transitioned from "ice-like water" to "liquid-like water" structures. Lastly, an opposite friction trend was observed for the graphene/SiO interface with water molecules failing to lubricate the interface as compared to the dry graphene/SiO contact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b03776 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Shanghai for Science and Technology, Institute of Energy Material Science, Shanghai 200093, Shanghai, CHINA.
Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Tetracyclines (TCs) residues pose a significant threat to the aquatic environment and human health, therefore this study aims to develop a simple, rapid, and sensitive TCs detection method. Herein, a dual-responsive gel probe (LDH-CES@N) was designed, consisting of the intercalation of graphene quantum dots into europium-doped layered double hydroxide (LDH). In the presence of TCs, the as-prepared probe exhibited dual emission fluorescence at 504 nm and 616 nm due to the synergistic effect of aggregation-induced emission and antenna effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India. Electronic address:
Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!