A crucial mechanism to the formation of native, fully functional, 3D structures from local secondary structures is unraveled in this study. Through the introduction of various amino acid substitutions at four canonical β-turns in a three-fingered protein, Toxin α from Naja nigricollis, we found that the release of internal entropy to the external environment through the globally synchronized movements of local substructures plays a crucial role. Throughout the folding process, the folding species were saturated with internal entropy so that intermediates accumulated at the equilibrium state. Their relief from the equilibrium state was accomplished by the formation of a critical disulfide bridge, which could guide the synchronized movement of one of the peripheral secondary structure. This secondary structure collided with a core central structure, which flanked another peripheral secondary structure. This collision displaced the internal thermal fluctuations from the first peripheral structure to the second peripheral structure, where the displaced thermal fluctuations were ultimately released as entropy. Two protein folding processes that acted in succession were identified as the means to establish the flow of thermal fluctuations. The first process was the time-consuming assembly process, where stochastic combinations of colliding, native-like, secondary structures provided candidate structures for the folded protein. The second process was the activation process to establish the global mutual relationships of the native protein in the selected candidate. This activation process was initiated and propagated by a positive feedback process between efficient entropy release and well-packed local structures, which moved in synchronization. The molecular mechanism suggested by this experiment was assessed with a well-defined 3D structure of erabutoxin b because one of the turns that played a critical role in folding was shared with erabutoxin b.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997310 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198276 | PLOS |
Public Health Nutr
January 2025
Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom.
Objective: Humanitarian aid, including food aid, has increasingly shifted towards provision of cash assistance over in-kind benefits. This paper examines whether food security mediates the relationship between receipt of humanitarian cash transfers and subjective wellbeing among Syrian refugee youth in Jordan.
Design: Secondary analysis of the 2020-21 Survey of Young People in Jordan, which is nationally representative of Syrian youth aged 16-30.
Front Plant Sci
December 2024
National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.
View Article and Find Full Text PDFSexual and gender minority young adult (SGM YA) populations use tobacco at higher rates than their non-SGM YA peers. Prior studies have identified significant correlations between interpersonal stigma and tobacco use, yet structural stigma may also influence tobacco use among SGM YA. This study aimed to assess the indirect effects of structural stigma on current tobacco use among SGM YA and non-SGM YA via depletion of economic resources, interpersonal discrimination, and perceived psychological stress.
View Article and Find Full Text PDFThousands of regulatory noncoding RNAs (ncRNAs) have been annotated; however, their functions in gene regulation and contributions to cancer formation remain poorly understood. To gain a better understanding of the influence of ncRNAs on gene regulation during melanoma progression, we mapped the landscape of ncRNAs in melanocytes and melanoma cells. Nearly half of deregulated genes in melanoma are ncRNAs, with antisense RNAs (asRNAs) comprising a large portion of deregulated ncRNAs.
View Article and Find Full Text PDFUnlabelled: Structural RNAs exhibit a vast array of recurrent short 3D elements involving non-Watson-Crick interactions that help arrange canonical double helices into tertiary structures. We present CaCoFold-R3D, a probabilistic grammar that predicts these RNA 3D motifs (also termed modules) jointly with RNA secondary structure over a sequence or alignment. CaCoFold-R3D uses evolutionary information present in an RNA alignment to reliably identify canonical helices (including pseudoknots) by covariation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!