Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat.

PLoS One

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America.

Published: November 2018

Circadian clocks, present in almost all cells of the body, are entrained to rhythmic changes in the environment (e.g. light/dark cycles). Genes responsible for this timekeeping are named core-clock genes, which through transcriptional feedback interactions mediated by transcription factor binding to Ebox/RRE/Dbox elements can generate oscillatory activity of their expression. By regulating the transcription of other clock-controlled genes (CCGs) circadian information is transmitted to tissue and organ levels. Recent studies have indicated that there is a considerable variability of clock-controlled gene expression between tissues both with respect to the circadian genes that are regulated and to their phase lags. In this work, a mathematical model was adapted to explore the dynamics of core-clock and clock-controlled genes measured in four tissues of the rat namely liver, muscle, adipose, and lung. The model efficiently described the synchronous rhythmicity of core-clock genes and further predicted that their phases are mainly regulated by Per2 and Cry1 transcriptional delays and Rev-Erba and Cry1 degradation rates. Similarly, after mining databases for potential Ebox/RRE/Dbox elements in the promoter region of clock-controlled genes, the phase variabilities of the same genes between different tissues were described. The analysis suggests that inter-tissue circadian variability of the same clock-controlled genes is an inherent component of homeostatic function and may arise due to different transcription factor activities on Ebox/RRE/Dbox elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997360PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197534PLOS

Publication Analysis

Top Keywords

clock-controlled genes
20
ebox/rre/dbox elements
12
genes
10
circadian variability
8
core-clock clock-controlled
8
genes tissues
8
tissues rat
8
core-clock genes
8
transcription factor
8
variability clock-controlled
8

Similar Publications

[Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes].

Zhongguo Zhong Yao Za Zhi

December 2024

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.

This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.

View Article and Find Full Text PDF

TGF-β3 Restrains Osteoclastic Resorption Through Autophagy.

Bioengineering (Basel)

November 2024

State Key Laboratory of Bioactive Molecules and Drug Gability Assessment, Jinan University, No. 855 East Xingye Avenue, Guangzhou 510632, China.

While TGF-β3 promoted defect healing in a primate baboon skull defect model and patients, it remains unclear whether TGF-β3 affects the formation of osteoclasts and bone resorption between osteogenesis and osteolysis. Analysis of the full transcriptome of hPDLSCs (human periodontal ligament stem cells) revealed that the expression of RANKL was significantly up-regulated after TGF-β3 treatment during osteogenesis, which suggests its involvement in clock-controlled autophagy in bone metabolism. TRAP staining and bone resorption lacunae were used to assess the osteoclasts formed from RANKL-induced differentiated BMMs.

View Article and Find Full Text PDF

Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host.

Cancer Cell

January 2025

Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA. Electronic address:

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis despite aggressive therapy. Here, we hypothesized that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We find daily glucocorticoids promote or suppress GBM growth through glucocorticoid receptor (GR) signaling depending on time of day and the clock genes, Bmal1 and Cry.

View Article and Find Full Text PDF

Sex-dependent effects of chronic jet lag on circadian rhythm and metabolism in mice.

Biol Sex Differ

December 2024

Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Background: The circadian clock integrates external environmental changes into the internal physiology of organisms. Perturbed circadian clocks due to misaligned light cycles increase the risk of diseases, including metabolic disorders. However, the effects of sex differences in this context remain unclear.

View Article and Find Full Text PDF

Proteomic insights into circadian transcription regulation: novel E-box interactors revealed by proximity labeling.

Genes Dev

November 2024

Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;

Circadian clocks (∼24 h) are responsible for daily physiological, metabolic, and behavioral changes. Central to these oscillations is the regulation of gene transcription. Previous research has identified clock protein complexes that interact with the transcriptional machinery to orchestrate circadian transcription, but technological constraints have limited the identification of de novo proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!