An in situ straining holder capable of tensile deformation and high-angle tilt for electron tomography was developed for polymeric materials. The holder has a dedicated sample cartridge, on which a variety of polymeric materials, such as microtomed thin sections of bulk specimens and solvent-cast thin films, can be mounted. Fine, stable control of the deformation process with nanoscale magnification was achieved. The holder allows large tensile deformation (≃800 μm) with a large field of view (800 × 200 μm before the deformation), and a high tilt angle (±75°) during in situ observations. With the large tensile deformation, the strain on the specimen can be as large as 26, at least one order of magnitude larger than the holder's predecessor. We expect that meso- and microscopic insights into the dynamic mechanical deformation and fracture processes of polymeric materials can be obtained by combining the holder with a transmission electron microscope equipped with an energy filter. The filter allows zero-loss imaging to improve the resolution and image contrast for thick specimens. We used this technique to study the deformation process in a silica nanoparticle-filled isoprene rubber.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jmicro/dfy027 | DOI Listing |
Mater Horiz
January 2025
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China.
Hydrogel electrolytes are crucial for solving the problems of random zinc dendrite growth, hydrogen evolution reactions, and uncontrollable passivation. However, their complex fabrication processes pose challenges to achieving large-scale production with excellent mechanical properties required to withstand multiple cycles of mechanical loads while maintaining high electrochemical performance needed for the new-generation flexible zinc-ion batteries. Herein, we present a superspreading-based strategy to produce robust hydrogel electrolytes consisting of polyvinyl alcohol, sodium alginate and sodium acetate.
View Article and Find Full Text PDFACS Omega
January 2025
Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey.
In this study, a thorough examination of the chemical, thermal, and mechanical characteristics, as well as shape memory behavior at low temperatures, of blends consisting of polylactic acid (PLA) and polyurethane (TPU) is conducted. The research involves the preparation of PLA/TPU mixtures with varying concentrations of TPU using a high-speed thermo-kinetic mixing approach. Chemical, morphological, and thermal analyses were conducted on pure PLA, TPU, and PLA/TPU mixtures by using Fourier Transform Infrared (FTIR), X-ray diffraction pattern spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart Universitesi, 17100, Çanakkale, Turkey.
The anisotropic behavior of fiber-reinforced polymer composites, coupled with their susceptibility to various failure modes, poses challenges for their structural health monitoring (SHM) during service life. To address this, non-destructive testing techniques have been employed, but they often suffer from drawbacks such as high costs and suboptimal resolutions. Moreover, routine inspections fail to disclose incidents or failures occurring between successive assessments.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" (LaBS), Politecnico di Milano, Milano, Italy. Electronic address:
Subretinal injection of gene products is the only treatment option for inherited retinal diseases. However, this procedure induces localized high multiaxial deformations, potentially causing irreversible tissue damage due to retinal overstretching and tearing. Comprehensive characterization of retinal mechanical behavior is essential for performing safe injections.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Shandong University, Jinan, China.
In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!