Improved knowledge of the interactions between plants and insects will facilitate better insect control in crops. Brassinosteroids (BRs) play a vital role in plant growth, developmental processes, and responses to pathogen infection, but the role of BRs in interactions between plants and insects remain largely unknown. In this study, we characterized a negative role of BRs in rice defense against brown planthopper (BPH, Nilaparvata lugens) and examined its underlying mechanisms. We found that BPH infestation suppressed the BR pathway while successively activating the salicylic acid (SA) and jasmonic acid (JA) pathways. In addition, BR-overproducing mutants and plants treated with 24-epibrassinolide (BL) showed increased susceptibility to BPH, whereas BR-deficient mutants were more resistant than the wild-type. BRs down-regulated the expression of genes related to the SA pathway and reduced SA content while genes related to the JA pathway were up-regulated and JA content increased after BPH infestation. Furthermore, BR-mediated suppression of the SA pathway was impaired both in JA-deficient and JA-insensitive mutants. Our results demonstrate that BRs promote the susceptibility of rice plants to BPH by modulating the SA and JA pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093477PMC
http://dx.doi.org/10.1093/jxb/ery223DOI Listing

Publication Analysis

Top Keywords

brown planthopper
8
salicylic acid
8
acid jasmonic
8
jasmonic acid
8
acid pathways
8
interactions plants
8
plants insects
8
role brs
8
bph infestation
8
genes pathway
8

Similar Publications

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

The brown planthopper (BPH) Nilaparvata lugens (Stål) is a major insect pest of Oryza sativa that causes crop yield loss in tropical regions, including Thailand. In this study, the crude ethanolic extract of the leaves and branches of Combretum trifoliatum , its active isolated components, apigenin and camphor, and Finopril were tested for their ability to control the first to fifth instars of N. lugens.

View Article and Find Full Text PDF

OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae.

Plant Cell Rep

December 2024

CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.

View Article and Find Full Text PDF

Insect gustatory receptors play a critical role in modulating feeding behaviors by detecting external nutritional cues through complex biochemical pathways. Bitter taste receptors are essential for insects to identify and avoid toxins. However, the detailed molecular and cellular mechanisms by which these receptors influence insect feeding behavior remain poorly understood.

View Article and Find Full Text PDF

The brown planthoppers (BPH, Nilaparvata lugens), white backed planthopper (WBPH, Sogatella furcifera) and small brown planthopper (SBPH, Laodelphax striatellus) are widely distributed rice insect pests, causing huge annual yield loss of rice production. Though these three planthoppers belong to the same family, Delphacidae of Hemiptera, their genome sizes (GS) are very different, ranging from 541 to 1088 Mb. To uncover the main factors driving GS changes of three planthoppers, we first estimated the GS of their ancestor Fulgoroidea, to be 794.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!