Exploring genes and pathways underlying intellectual disability (ID) provides insight into brain development and function, clarifying the complex puzzle of how cognition develops. As part of ongoing systematic studies to identify candidate ID genes, linkage analysis and next-generation sequencing revealed Zinc Finger and BTB Domain Containing 11 (ZBTB11) as a novel candidate ID gene. ZBTB11 encodes a little-studied transcription regulator, and the two identified missense variants in this study are predicted to disrupt canonical Zn2+-binding residues of its C2H2 zinc finger domain, leading to possible altered DNA binding. Using HEK293T cells transfected with wild-type and mutant GFP-ZBTB11 constructs, we found the ZBTB11 mutants being excluded from the nucleolus, where the wild-type recombinant protein is predominantly localized. Pathway analysis applied to ChIP-seq data deposited in the ENCODE database supports the localization of ZBTB11 in nucleoli, highlighting associated pathways such as ribosomal RNA synthesis, ribosomal assembly, RNA modification and stress sensing, and provides a direct link between subcellular ZBTB11 location and its function. Furthermore, given the report of prominent brain and spinal cord degeneration in a zebrafish Zbtb11 mutant, we investigated ZBTB11-ortholog knockdown in Drosophila melanogaster brain by targeting RNAi using the UAS/Gal4 system. The observed approximate reduction to a third of the mushroom body size-possibly through neuronal reduction or degeneration-may affect neuronal circuits in the brain that are required for adaptive behavior, specifying the role of this gene in the nervous system. In conclusion, we report two ID families segregating ZBTB11 biallelic mutations disrupting Zn2+-binding motifs and provide functional evidence linking ZBTB11 dysfunction to this phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy220DOI Listing

Publication Analysis

Top Keywords

zbtb11
9
missense variants
8
intellectual disability
8
zinc finger
8
biallelic missense
4
variants zbtb11
4
zbtb11 intellectual
4
disability humans
4
humans exploring
4
exploring genes
4

Similar Publications

Systematic pan-cancer analysis identifies ZBTB11 as a potential pan-cancer biomarker and immunotherapy target in multiple tumor types.

Discov Oncol

December 2024

Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China.

Background: ZBTB11 is a putative transcription factor with an N-terminal BTB domain and tandem C-terminal zinc finger motifs. Recent studies have suggested a potential role for ZBTB11 in tumorigenesis. However, the biological significance of ZBTB11 in different cancer types remains uncertain.

View Article and Find Full Text PDF

The zinc finger and BTB domain-containing 11 gene (zbtb11) is expressed in the Xenopus anterior neuroectoderm, but the molecular nature of the Zbtb11 protein during embryonic development remains to be elucidated. Here, we show the role of Zbtb11 in anterior patterning of the neuroectoderm and the cooperative action with the transcription factor Otx2. Both overexpression and knockdown of zbtb11 caused similar phenotypes: expanded expression of the posterior gene gbx2 in the neural plate, and later microcephaly with reduced eyes, suggesting that a proper level of zbtb11 expression is necessary for normal patterning of the neuroectoderm, including eye formation.

View Article and Find Full Text PDF
Article Synopsis
  • Biallelic variants in the ZBTB11 gene are linked to a rare intellectual developmental disorder known as MRT69, which shows a variety of clinical symptoms.
  • The study focused on analyzing clinical and genetic traits of 29 individuals (ages 2-50) with these variants, finding diverse neurodevelopmental issues and complex movement disorders among the patients.
  • Results revealed that many patients had abnormal movements (like ataxia and dystonia) and cataracts, with one patient showing improvement from deep brain stimulation, contributing 13 new genetic variants to the understanding of ZBTB11-related disorders.
View Article and Find Full Text PDF

Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras. Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition of complex I is poorly tolerated in patients due to on-target induction of peripheral neuropathy.

View Article and Find Full Text PDF

Oncoprotein SET-associated transcription factor ZBTB11 triggers lung cancer metastasis.

Nat Commun

February 2024

State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.

Metastasis is the major cause of lung cancer-related death, but the mechanisms governing lung tumor metastasis remain incompletely elucidated. SE translocation (SET) is overexpressed in lung tumors and correlates with unfavorable prognosis. Here we uncover SET-associated transcription factor, zinc finger and BTB domain-containing protein 11 (ZBTB11), as a prometastatic regulator in lung tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!