Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymer zwitterions were synthesized by nucleophilic ring-opening of 3,3'-(but-2-ene-1,4-diyl)bis(1,2-oxathiolane 2,2-dioxide) (a bis-sultone) with functional perylene diimide (PDI) or fullerene monomers. Integration of these polymers into solar cell devices as cathode interlayers boosted efficiencies of fullerene-based organic photovoltaics (OPVs) from 2.75 % to 10.74 %, and of non-fullerene-based OPVs from 4.25 % to 10.10 %, demonstrating the versatility of these interlayer materials in OPVs. The fullerene-containing polymer zwitterion (C -PZ) showed a higher interfacial dipole (Δ) value and electron mobility than its PDI counterpart (PDI-PZ), affording solar cells with high efficiency. The power of PDI-PZ and C -PZ to improve electron injection and extraction processes when positioned between metal electrodes and organic semiconductors highlights their promise to overcome energy barriers at the hard-soft materials interface of organic electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201803748 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!