Complete charge separation provoked by full cation encapsulation in the radical mono- and di-anions of 5,6:11,12-di-o-phenylene-tetracene.

Dalton Trans

Fachbereich Chemie, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss Str. 12, 64287 Darmstadt, Germany.

Published: August 2018

Herein, we report the synthesis and molecular structure of the mono- and dianionic aromatic molecules [(B15C5-κ5O)2K+](LDOPT˙-) (1) and [(B15C5-κ5O)2K+]2(LDOPT2-)THFsolv (2) derived from the parent aromatic polyhydrocarbon 5,6:11,12-di-o-phenylenetetracene (DOPT, LDOPT) by a controlled stepwise one and two electron chemical reduction. The effect of single and double electron charge transfer to a polycondensed aromatic hydrocarbon (PAH) without any disturbing influence of an associated metal cation has been demonstrated. This was achieved by fully sandwiching the cationic K+ counterions between two benzo-15-crown-5-ether (B15C5) ligands resulting in a fully encapsulating (κ10O) geometry which ensures a complete separation of the K+ counterions and the bare anionic PAH species [LDOPT˙-] and [LDOPT2-]. The structural changes accompanied by the stepwise reduction from LDOPT to [LDOPT˙-] to [LDOPT2-] are discussed and compared to earlier predictions based on density functional theory (DFT) as well as the results of previous studies of alkaline metal cationic PAH anion interactions of DOPT in which only a partial metal cation encapsulation has been achieved so far.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt01285gDOI Listing

Publication Analysis

Top Keywords

cation encapsulation
8
metal cation
8
[ldopt˙-] [ldopt2-]
8
complete charge
4
charge separation
4
separation provoked
4
provoked full
4
full cation
4
encapsulation radical
4
radical mono-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!