Background: Genetic variations in nucleotide excision repair genes can alter the risk of squamous cell carcinoma of head and neck (SCCHN).

Materials And Methods: The present study has genotyped 334 subjects from North Indian population for xeroderma pigmentosum complementation Group C (XPC) rs2228001A>C, XPC rs77907221 polyadenylate (PAT) deletion/insertion (D/I), xeroderma pigmentosum complementation Group D - rs13181A>C, and xeroderma pigmentosum complementation Type G rs17655 G>C polymorphisms with polymerase chain reaction (PCR)-restriction-fragment length polymorphism or allele-specific PCR methods.

Results: Compared to D allele, I allele for XPC PAT D/I polymorphism was associated with significantly decreased the risk of SCCHN (odds ratios = 0.67, 95% confidence interval [CI] =0.48-0.94, P = 0.03). Haplotype CI constituted from XPC polymorphisms was also associated with decreased risk of SCCHN (P = 0.004). In contrast, haplotype Crohn's disease significantly increased the risk for SCCHN (P < 0.00). A significant early onset of SCCHN was observed in individuals with CC genotype for XPC A>C polymorphism (P = 0.004).

Conclusion: Our results suggest a possible risk modulation for SCCHN with XPC polymorphisms in North Indian population.

Download full-text PDF

Source
http://dx.doi.org/10.4103/jcrt.JCRT_358_17DOI Listing

Publication Analysis

Top Keywords

xeroderma pigmentosum
16
pigmentosum complementation
16
north indian
12
indian population
12
complementation group
12
risk scchn
12
risk squamous
8
squamous cell
8
cell carcinoma
8
carcinoma head
8

Similar Publications

Background: Platinum chemotherapy (CT) remains the backbone of systemic therapy for patients with small-cell lung cancer (SCLC). The nucleotide excision repair (NER) pathway plays a central role in the repair of the DNA damage exerted by platinum agents. Alteration in this repair mechanism may affect patients' survival.

View Article and Find Full Text PDF

Thirteen children with xeroderma pigmentosum variant C were evaluated using the Dermoscopic Photoaging Assessment Scale (DPAS), the Glogau scale, and the Sun Protection Behavior Scale (SPBS). Most patients exhibited signs of epidermal photoaging, with pigmentary and vascular changes and poor sun protection behavior (mean SPBS score: 18.92 ± 5.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Transcription-coupled repair - mechanisms of action, regulation, and associated human disorders.

FEBS Lett

December 2024

Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!