The invasive and recurrent nature of glioblastoma multiforme (GBM) is linked to a small subpopulation of cancer cells, which are self-renewing, resistant to standard treatment regimens, and induce formation of new tumors. Matrix stiffness is implicated in the regulation of cell proliferation, drug resistance, and reversion to a more invasive phenotype. Therefore, understanding the relationship between matrix stiffness and tumor cell behavior is vital to develop appropriate in vitro tumor models. Here, chitosan-hyaluronic acid (CHA) polyelectrolyte complex scaffolds are fabricated with statistically significant stiffness variances to characterize the effect of scaffold stiffness on morphology, proliferation, drug resistance, and gene expression in human glioblastoma cells (U-87 MG). All scaffolds support GBM proliferation over a 12-day culture period, yet larger spheroids are observed in scaffolds with higher stiffness. Additionally, GBM cells cultured in stiffer CHA scaffolds prove significantly more resistant to the common chemotherapeutic temozolomide. Moreover, the stiffer 8% CHA scaffolds exhibit an increase in expression of drug resistance and invasion related genes compared to 2D culture. CHA scaffolds present a tunable microenvironment for enhanced tumor cell malignancy and may provide a valuable in vitro microenvironment for studying tumor progression and screening anticancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116517PMC
http://dx.doi.org/10.1002/adhm.201800295DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
cha scaffolds
12
chitosan-hyaluronic acid
8
matrix stiffness
8
proliferation drug
8
tumor cell
8
stiffer cha
8
scaffolds
7
stiffness
6
fabrication characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!