We report a functional hybrid made of silver nanoparticles (AgNPs) embedded in an amorphous aluminium oxide (alumina) film. This laser-initiated process allows formation of AgNPs and amorphous alumina in localized regions defined by the scanning laser beam. Due to metal enhanced fluorescence, this hybrid exhibits strong blue fluorescence emission under ultraviolet excitation. Upon irradiating with electrons at dosages of 1 to 20 mC cm-2, AgNPs become more metallic while the Al film is further oxidised. As a result, the fluorescing property is intensified. Using a hybrid irradiated with 10 mC cm-2, the electronic conductivity of the sample is improved by 11.5 times compared to that of the as-synthesized hybrid film. Excitation by UV light on the sample results in an increase in the detected current of nearly 29 times. Given that the electron beam patterned message is selectively visible only under UV or blue light irradiation, this hybrid film is thus a possible platform for steganographic transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr03245aDOI Listing

Publication Analysis

Top Keywords

hybrid film
8
hybrid
6
laser assisted
4
assisted blending
4
blending nanoparticles
4
nanoparticles alumina
4
alumina veil
4
veil highly
4
highly fluorescent
4
fluorescent hybrid
4

Similar Publications

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF
Article Synopsis
  • Human-machine interaction is rapidly transforming technology, with gesture recognition being key to improving how humans interact with machines.
  • Existing systems often lack comfort and usability, prompting the development of a new handwriting recognition technology using a hybrid-fabric wristband that incorporates advanced sensors.
  • This innovative system features a lightweight, breathable design with high accuracy (96.63%) in handwriting recognition, aiming to enhance the user experience in wearable devices for better interaction in virtual environments.
View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!